Introduction to the Special Issue on Machine Learning for Traffic Sign Recognition

2012 ◽  
Vol 13 (4) ◽  
pp. 1481-1483 ◽  
Author(s):  
Johannes Stallkamp ◽  
Marc Schlipsing ◽  
Jan Salmen ◽  
Christian Igel
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2684 ◽  
Author(s):  
Obed Tettey Nartey ◽  
Guowu Yang ◽  
Sarpong Kwadwo Asare ◽  
Jinzhao Wu ◽  
Lady Nadia Frempong

Traffic sign recognition is a classification problem that poses challenges for computer vision and machine learning algorithms. Although both computer vision and machine learning techniques have constantly been improved to solve this problem, the sudden rise in the number of unlabeled traffic signs has become even more challenging. Large data collation and labeling are tedious and expensive tasks that demand much time, expert knowledge, and fiscal resources to satisfy the hunger of deep neural networks. Aside from that, the problem of having unbalanced data also poses a greater challenge to computer vision and machine learning algorithms to achieve better performance. These problems raise the need to develop algorithms that can fully exploit a large amount of unlabeled data, use a small amount of labeled samples, and be robust to data imbalance to build an efficient and high-quality classifier. In this work, we propose a novel semi-supervised classification technique that is robust to small and unbalanced data. The framework integrates weakly-supervised learning and self-training with self-paced learning to generate attention maps to augment the training set and utilizes a novel pseudo-label generation and selection algorithm to generate and select pseudo-labeled samples. The method improves the performance by: (1) normalizing the class-wise confidence levels to prevent the model from ignoring hard-to-learn samples, thereby solving the imbalanced data problem; (2) jointly learning a model and optimizing pseudo-labels generated on unlabeled data; and (3) enlarging the training set to satisfy the hunger of deep learning models. Extensive evaluations on two public traffic sign recognition datasets demonstrate the effectiveness of the proposed technique and provide a potential solution for practical applications.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Christine Dewi ◽  
Rung-Ching Chen ◽  
Yan-Ting Liu ◽  
Xiaoyi Jiang ◽  
Kristoko Dwi Hartomo

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 686
Author(s):  
Ke Zhou ◽  
Yufei Zhan ◽  
Dongmei Fu

Traffic sign recognition in poor environments has always been a challenge in self-driving. Although a few works have achieved good results in the field of traffic sign recognition, there is currently a lack of traffic sign benchmarks containing many complex factors and a robust network. In this paper, we propose an ice environment traffic sign recognition benchmark (ITSRB) and detection benchmark (ITSDB), marked in the COCO2017 format. The benchmarks include 5806 images with 43,290 traffic sign instances with different climate, light, time, and occlusion conditions. Second, we tested the robustness of the Libra-RCNN and HRNetv2p on the ITSDB compared with Faster-RCNN. The Libra-RCNN performed well and proved that our ITSDB dataset did increase the challenge in this task. Third, we propose an attention network based on high-resolution traffic sign classification (PFANet), and conduct ablation research on the design parallel fusion attention module. Experiments show that our representation reached 93.57% accuracy in ITSRB, and performed as well as the newest and most effective networks in the German traffic sign recognition dataset (GTSRB).


Author(s):  
Tianjiao Huo ◽  
Jiaqi Fan ◽  
Xin Li ◽  
Hong Chen ◽  
Bingzhao Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document