Low-Cost Attitude Estimation Using GPS/IMU Fusion Aided by Land Vehicle Model Constraints and Gravity-Based Angles

Author(s):  
Zongwei Wu ◽  
Ding Yuan ◽  
Fenggan Zhang ◽  
Minli Yao
2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Heikki Hyyti ◽  
Arto Visala

An attitude estimation algorithm is developed using an adaptive extended Kalman filter for low-cost microelectromechanical-system (MEMS) triaxial accelerometers and gyroscopes, that is, inertial measurement units (IMUs). Although these MEMS sensors are relatively cheap, they give more inaccurate measurements than conventional high-quality gyroscopes and accelerometers. To be able to use these low-cost MEMS sensors with precision in all situations, a novel attitude estimation algorithm is proposed for fusing triaxial gyroscope and accelerometer measurements. An extended Kalman filter is implemented to estimate attitude in direction cosine matrix (DCM) formation and to calibrate gyroscope biases online. We use a variable measurement covariance for acceleration measurements to ensure robustness against temporary nongravitational accelerations, which usually induce errors when estimating attitude with ordinary algorithms. The proposed algorithm enables accurate gyroscope online calibration by using only a triaxial gyroscope and accelerometer. It outperforms comparable state-of-the-art algorithms in those cases when there are either biases in the gyroscope measurements or large temporary nongravitational accelerations present. A low-cost, temperature-based calibration method is also discussed for initially calibrating gyroscope and acceleration sensors. An open source implementation of the algorithm is also available.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4157 ◽  
Author(s):  
Dafeng Long ◽  
Xiaoming Zhang ◽  
Xiaohui Wei ◽  
Zhongliang Luo ◽  
Jianzhong Cao

Attitude measurement is an essential technology in projectile trajectory correction. Magnetometers have been used for projectile attitude measurement systems as they are small in size, lightweight, and low cost. However, magnetometers are seriously disturbed by the artillery magnetic field during launch. Moreover, the error parameters of the magnetometers, which are calibrated in advance, usually change after extended storage. The changed parameters have negative effects on attitude estimation of the projectile. To improve the accuracy of attitude estimation, the magnetometers should be calibrated again before launch or during flight. This paper presents a fast calibration method specific for a spinning projectile. At the launch site, the tri-axial magnetometer is calibrated, the parameters of magnetometer are quickly obtained by optimal ellipsoid fitting based on a least squares criterion. Then, the calibration parameters are used to compensate for magnetometer outputs during flight. The numerical simulation results show that the proposed calibration method can effectively determine zero bias, scale factors, and alignment angle errors. Finally, a semi-physical experimental system was designed to further verify the performance of the calibration method. The results show that pitch angle error reduces from 3.52° to 0.58° after calibration. The roll angle error is reduced from 2.59° to 0.65°. Simulations and experimental results indicate that the accuracy of magnetometer in strap-down spinning projectile has been greatly enhanced, and the attitude estimation errors are reduced after calibration.


2015 ◽  
Vol 8 (11) ◽  
pp. 113-126 ◽  
Author(s):  
Dung Duong Quoc ◽  
Jinwei Sun ◽  
Van Nhu Le

2016 ◽  
Vol 16 (18) ◽  
pp. 6997-7007 ◽  
Author(s):  
Jin Wu ◽  
Zebo Zhou ◽  
Jingjun Chen ◽  
Hassen Fourati ◽  
Rui Li

Sign in / Sign up

Export Citation Format

Share Document