Interpretable Engagement Models for MOOCs Using Hinge-Loss Markov Random Fields

2020 ◽  
Vol 13 (1) ◽  
pp. 107-122
Author(s):  
Arti Ramesh ◽  
Dan Goldwasser ◽  
Bert Huang ◽  
Hal Daume ◽  
Lise Getoor
Author(s):  
Yue Zhang ◽  
Arti Ramesh

Statistical relational models such as Markov logic networks (MLNs) and hinge-loss Markov random fields (HL-MRFs) are specified using templated weighted first-order logic clauses, leading to the creation of complex, yet easy to encode models that effectively combine uncertainty and logic. Learning the structure of these models from data reduces the human effort of identifying the right structures. In this work, we present an asynchronous deep reinforcement learning algorithm to automatically learn HL-MRF clause structures. Our algorithm possesses the ability to learn semantically meaningful structures that appeal to human intuition and understanding, while simultaneously being able to learn structures from data, thus learning structures that have both the desirable qualities of interpretability and good prediction performance. The asynchronous nature of our algorithm further provides the ability to learn diverse structures via exploration, while remaining scalable. We demonstrate the ability of the models to learn semantically meaningful structures that also achieve better prediction performance when compared with a greedy search algorithm, a path-based algorithm, and manually defined clauses on two computational social science applications: i) modeling recovery in alcohol use disorder, and ii) detecting bullying.


Author(s):  
Sriram Srinivasan ◽  
Behrouz Babaki ◽  
Golnoosh Farnadi ◽  
Lise Getoor

Statistical relational learning models are powerful tools that combine ideas from first-order logic with probabilistic graphical models to represent complex dependencies. Despite their success in encoding large problems with a compact set of weighted rules, performing inference over these models is often challenging. In this paper, we show how to effectively combine two powerful ideas for scaling inference for large graphical models. The first idea, lifted inference, is a wellstudied approach to speeding up inference in graphical models by exploiting symmetries in the underlying problem. The second idea is to frame Maximum a posteriori (MAP) inference as a convex optimization problem and use alternating direction method of multipliers (ADMM) to solve the problem in parallel. A well-studied relaxation to the combinatorial optimization problem defined for logical Markov random fields gives rise to a hinge-loss Markov random field (HLMRF) for which MAP inference is a convex optimization problem. We show how the formalism introduced for coloring weighted bipartite graphs using a color refinement algorithm can be integrated with the ADMM optimization technique to take advantage of the sparse dependency structures of HLMRFs. Our proposed approach, lifted hinge-loss Markov random fields (LHL-MRFs), preserves the structure of the original problem after lifting and solves lifted inference as distributed convex optimization with ADMM. In our empirical evaluation on real-world problems, we observe up to a three times speed up in inference over HL-MRFs.


2008 ◽  
Vol 48 ◽  
pp. 1041 ◽  
Author(s):  
Daniel Peter Simpson ◽  
Ian W. Turner ◽  
A. N. Pettitt

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1389
Author(s):  
Julia García Cabello ◽  
Pedro A. Castillo ◽  
Maria-del-Carmen Aguilar-Luzon ◽  
Francisco Chiclana ◽  
Enrique Herrera-Viedma

Standard methodologies for redesigning physical networks rely on Geographic Information Systems (GIS), which strongly depend on local demographic specifications. The absence of a universal definition of demography makes its use for cross-border purposes much more difficult. This paper presents a Decision Making Model (DMM) for redesigning networks that works without geographical constraints. There are multiple advantages of this approach: on one hand, it can be used in any country of the world; on the other hand, the absence of geographical constraints widens the application scope of our approach, meaning that it can be successfully implemented either in physical (ATM networks) or non-physical networks such as in group decision making, social networks, e-commerce, e-governance and all fields in which user groups make decisions collectively. Case studies involving both types of situations are conducted in order to illustrate the methodology. The model has been designed under a data reduction strategy in order to improve application performance.


Sign in / Sign up

Export Citation Format

Share Document