Three-Dimensional Magnetohydrodynamic Calculation for Coupling Multiphase Flow in Round Billet Continuous Casting Mold With Electromagnetic Stirring

2010 ◽  
Vol 46 (1) ◽  
pp. 82-86 ◽  
Author(s):  
Yu Haiqi ◽  
Zhu Miaoyong
Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 516
Author(s):  
Lianwang Zhang ◽  
Changjun Xu ◽  
Jiazheng Zhang ◽  
Tao Wang ◽  
Jing Li ◽  
...  

The electromagnetic model of a large-bloom continuous casting was established to simulate the magnetic field. The model 3600 digital, high-precision, three-dimensional Gaussian meter was used to measure the internal magnetic field of mold electromagnetic stirring (M-EMS). The distribution of simulated magnetic field was basically consistent with that of the measured magnetic field; the accuracy of electromagnetic stirring model was verified. With the increase of current frequency, the electromagnetic force first increases and then decreases; when the current frequency is 9 Hz, the electromagnetic force reaches its maximum value. A bipolar electromagnetic stirring model is proposed; the influence of current intensity and distance were investigated. With the increase of current intensity of lower mold electromagnetic stirring (M-EMSB), the internal magnetic intensity of upper mold electromagnetic stirring (M-EMSA) gradually increases, and the middle region is gradually filled by magnetic field. With the increase of the distance, the range of the low-intensity magnetic field expands. When the current intensity of the M-EMSB is 320 A, and the distance is 400 mm, an 8 mT uniform magnetic field in the range of 1.2 m is formed. Compared with the traditional continuous casting electromagnetic agitator, the center equiaxial crystal of bipolar electromagnetic agitator increases from 30.3% to 49.5%.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Wenjie Zhang ◽  
Sen Luo ◽  
Yao Chen ◽  
Weiling Wang ◽  
Miaoyong Zhu

Electromagnetic stirring in mold (M-EMS) has been widely used in continuous casting process to improve the solidification quality of the steel strand. In the present study, a 3D multi-physical-field mathematical model was developed to predict the macro transport phenomena in continuous casting mold with M-EMS using ANSYS commercial software, and was adopted to investigate the effect of current intensity (0, 150, 200, and 240 A) on the heat, momentum, and species transports in the billet continuous casting mold with a size of 160 mm × 160 mm. The results show that when the M-EMS is on, the horizontal swirling flow appears and shifts the high-temperature zone upward. With the increase of current intensity, two swirling flows form on the longitudinal section of continuous casting mold and become more intensive, and the flow velocity of the molten steel at the solidification front increases. Thus, the wash effects of the fluid flow on the initial solidified shell become intensive, resulting in a thinner shell thickness at the mold exit and a significant negative segregation of carbon at the billet subsurface.


2010 ◽  
Vol 146-147 ◽  
pp. 272-276 ◽  
Author(s):  
Jing Zhang ◽  
En Gang Wang ◽  
An Yuan Deng ◽  
Xiu Jie Xu ◽  
Ji Cheng He

A coupled numerical simulation of magnetic field and flow field was conducted basing on Φ250mm bloom during continuous casting with electromagnetic stirring.The distribution of the flow field was analyzed in different current and frequency.At the same current,the velocity first decrease and then increase as the frequency increase along the casting direction.At the same frequency, tangential velocity is dominant in the radial of EMS center,velocity increase with the current. Considered the results of numerical simulation,the optimized EMS parameters of Φ250mm bloom are the stirring current of 480A and the stirring frequency of 3Hz.


Sign in / Sign up

Export Citation Format

Share Document