Signal Detection Using Extrinsic Information from Neural Networks for Bit-Patterned Media Recording

2020 ◽  
pp. 1-1
Author(s):  
Seongkwon Jeong ◽  
Jaejin Lee
2020 ◽  
Vol 10 (24) ◽  
pp. 8819
Author(s):  
Seongkwon Jeong ◽  
Jaejin Lee

Because of the physical and engineering problems of conventional magnetic data storage systems, bit-patterned media recording (BPMR) is expected to be a promising technology for extending the storage density to beyond 1 Tb /in2. To increase the storage density in BPMR systems, the separation between islands in both down- and cross-track directions must be reduced; this reduction results in two-dimensional interference from neighboring symbols in those directions, which is a major performance degradation factor in BPMR. Herein, we propose an iterative signal detection scheme between a Viterbi detector and a multilayer perceptron to improve the performance of a BPMR system. In the proposed signal detection scheme, we use the modified output of a multilayer perceptron as a priori information to improve equalization and extrinsic information to decrease the effect of intertrack interference.


2012 ◽  
Vol 48 (11) ◽  
pp. 4574-4577 ◽  
Author(s):  
Laurens Alink ◽  
J. P. J. Groenland ◽  
Jeroen de Vries ◽  
Leon Abelmann

2012 ◽  
Vol 3 ◽  
pp. 4500204-4500204 ◽  
Author(s):  
N. Eibagi ◽  
J. J. Kan ◽  
F. E. Spada ◽  
E. E. Fullerton

AIP Advances ◽  
2016 ◽  
Vol 7 (5) ◽  
pp. 056501 ◽  
Author(s):  
W. Busyatras ◽  
C. Warisarn ◽  
Y. Okamoto ◽  
Y. Nakamura ◽  
L. M. M. Myint ◽  
...  

2004 ◽  
Vol 213 ◽  
pp. 483-486
Author(s):  
David Brodrick ◽  
Douglas Taylor ◽  
Joachim Diederich

A recurrent neural network was trained to detect the time-frequency domain signature of narrowband radio signals against a background of astronomical noise. The objective was to investigate the use of recurrent networks for signal detection in the Search for Extra-Terrestrial Intelligence, though the problem is closely analogous to the detection of some classes of Radio Frequency Interference in radio astronomy.


Sign in / Sign up

Export Citation Format

Share Document