scholarly journals Hybrid Small Animal Imaging System Combining Magnetic Resonance Imaging With Fluorescence Tomography Using Single Photon Avalanche Diode Detectors

2011 ◽  
Vol 30 (6) ◽  
pp. 1265-1273 ◽  
Author(s):  
Florian Stuker ◽  
Christof Baltes ◽  
Katerina Dikaiou ◽  
Divya Vats ◽  
Lucio Carrara ◽  
...  
2021 ◽  
Author(s):  
Mucong Li ◽  
Nathan Beaumont ◽  
Chenshuo Ma ◽  
Juan Rojas ◽  
Tri Vu ◽  
...  

Abstract Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x-ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound in a non-invasive manner. PAUSAT can perform three imaging functions simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are automatically co-registered, with high spatial resolutions at large depth. Using PAUSAT, we conducted proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting genetically-encoded breast tumor expressing photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.


2016 ◽  
Vol 16 (6) ◽  
pp. 294-299 ◽  
Author(s):  
S. Solis-Najera ◽  
F. Vazquez ◽  
R. Hernandez ◽  
O. Marrufo ◽  
A.O. Rodriguez

Abstract A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.


2008 ◽  
Vol 20 (4) ◽  
pp. 1297-1327 ◽  
Author(s):  
Katherine H. Karlsgodt ◽  
Daqiang Sun ◽  
Amy M. Jimenez ◽  
Evan S. Lutkenhoff ◽  
Rachael Willhite ◽  
...  

AbstractSchizophrenia has been thought of as a disorder of reduced functional and structural connectivity. Recent advances in neuroimaging techniques such as functional magnetic resonance imaging, structural magnetic resonance imaging, diffusion tensor imaging, and small animal imaging have advanced our ability to investigate this hypothesis. Moreover, the power of longitudinal designs possible with these noninvasive techniques enable the study of not just how connectivity is disrupted in schizophrenia, but when this disruption emerges during development. This article reviews genetic and neurodevelopmental influences on structural and functional connectivity in human populations with or at risk for schizophrenia and in animal models of the disorder. We conclude that the weight of evidence across these diverse lines of inquiry points to a developmental disruption of neural connectivity in schizophrenia and that this disrupted connectivity likely involves susceptibility genes that affect processes involved in establishing intra- and interregional connectivity.


1995 ◽  
Vol 13 (6) ◽  
pp. VI-VII
Author(s):  
Machida Yoshio ◽  
Hatanaka Masahiko ◽  
Kitane Shinichi

1987 ◽  
Vol 21 (2) ◽  
pp. 204-207 ◽  
Author(s):  
Hidehiko Nabatame ◽  
Hidenao Fukuyama ◽  
Ichiro Akiguchi ◽  
Masakuni Kameyama ◽  
Kazumasa Nishimura ◽  
...  

Author(s):  
T.F. Peterson ◽  
Hyunki Kim ◽  
M.J. Crawford ◽  
B.M. Gershman ◽  
W.C.J. Hunter ◽  
...  

Author(s):  
B.K. Kundu ◽  
A.V. Stolin ◽  
J. Pole ◽  
L. Baumgart ◽  
M. Fontaine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document