A Dual Tissue-Doppler Optical-Flow Method for Speckle Tracking Echocardiography at High Frame Rate

2018 ◽  
Vol 37 (9) ◽  
pp. 2022-2032 ◽  
Author(s):  
Jonathan Poree ◽  
Mathilde Baudet ◽  
Francois Tournoux ◽  
Guy Cloutier ◽  
Damien Garcia
2021 ◽  
Vol 38 (4) ◽  
pp. 707-715
Author(s):  
Massimiliano Cantinotti ◽  
Pietro Marchese ◽  
Martin Koestenberger ◽  
Raffaele Giordano ◽  
Giuseppe Santoro ◽  
...  

Author(s):  
Kana Fujikura ◽  
Mohammed Makkiya ◽  
Muhammad Farooq ◽  
Yun Xing ◽  
Wayne Humphrey ◽  
...  

Background: global longitudinal strain (GLS) measures myocardial deformation and is a sensitive modality for detecting subclinical myocardial dysfunction and predicting cardiac outcomes. The accuracy of speckle-tracking echocardiography (STE) is dependent on temporal resolution. A novel software enables relatively high frame rate (Hi-FR) (~200 fps) echocardiographic images acquisition which empowers us to investigate the impact of Hi-FR imaging on GLS analysis. The goal of this pilot study was to demonstrate the feasibility of Hi-FR for STE. Methods: In this prospective study, we acquired echocardiographic images using clinical scanners on patients with normal left ventricular systolic function using Hi-FR and conventional frame rate (Reg-FR) (~50 FPS). GLS values were evaluated on apical 4-, 2- and 3-chamber images acquired in both Hi-FR and Reg-FR. Inter-observer and intra-observer variabilities were assessed in Hi-FR and Reg-FR. Results: There were 143 resting echocardiograms with normal LVEF included in this study. The frame rate of Hi-FR was 190 ± 25 and Reg-FR was 50 ± 3, and the heart rate was 71 ± 13. Strain values measured in Hi-FR were significantly higher than those measured in Reg-FR (all p < 0.001). Inter-observer and intra-observer correlations were strong in both Hi-FR and Reg-FR. Conclusions: We demonstrated that strain values were significantly higher using Hi-FR when compared with Reg-FR in patients with normal LVEF. It is plausible that higher temporal resolution enabled the measurement of myocardial strain at desired time point. The result of this study may inform clinical adoption of the novel technology. Further investigations are necessary to evaluate the value of Hi-FR to assess myocardial strain in stress echocardiography in the setting of tachycardia.


Author(s):  
Thor Edvardsen ◽  
Lars Gunnar Klaeboe ◽  
Ewa Szymczyk ◽  
Jarosław D. Kasprzak

Myocardial deformation or strain is the universal property of contracting cardiac muscle. Deformation is defined in physics as relative change of length (and is therefore unitless and usually given as percentage) and in cardiac imaging it is thus algebraically negative for shortening or positive for thickening. There are several definitions of strain—Lagrangian strain refers to a fixed baseline distance and Eulerian (or natural) strain—to a dynamically changing reference length, representing a time integral of strain rate (which can be obtained by tissue Doppler). Measurements of strains are usually obtained by greyscale image quantification modality—speckle-tracking echocardiography (STE) which analyses myocardial motion by tracking and matching naturally occurring markers of myocardial texture, described as speckles. Echocardiographic speckles represent interference pattern of subtle myocardial scatters and can be followed from frame to frame by dedicated software to define the displacement of the myocardium within the interval between consecutive frames (inverse of frame rate).


Author(s):  
Philippe Joos ◽  
Jonathan Poree ◽  
Herve Liebgott ◽  
Didier Vray ◽  
Mathilde Baudet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document