scholarly journals Universal chosen-ciphertext attack for a family of image encryption schemes

2020 ◽  
pp. 1-1 ◽  
Author(s):  
Junxin Chen ◽  
Lei Chen ◽  
Yicong Zhou
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 535
Author(s):  
Karim H. Moussa ◽  
Ahmed I. El Naggary ◽  
Heba G. Mohamed

Multimedia wireless communications have rapidly developed over the years. Accordingly, an increasing demand for more secured media transmission is required to protect multimedia contents. Image encryption schemes have been proposed over the years, but the most secure and reliable schemes are those based on chaotic maps, due to the intrinsic features in such kinds of multimedia contents regarding the pixels’ high correlation and data handling capabilities. The novel proposed encryption algorithm introduced in this article is based on a 3D hopping chaotic map instead of fixed chaotic logistic maps. The non-linearity behavior of the proposed algorithm, in terms of both position permutation and value transformation, results in a more secured encryption algorithm due to its non-convergence, non-periodicity, and sensitivity to the applied initial conditions. Several statistical and analytical tests such as entropy, correlation, key sensitivity, key space, peak signal-to-noise ratio, noise attacks, number of pixels changing rate (NPCR), unified average change intensity randomness (UACI), and others tests were applied to measure the strength of the proposed encryption scheme. The obtained results prove that the proposed scheme is very robust against different cryptography attacks compared to similar encryption schemes.


Cryptologia ◽  
2020 ◽  
pp. 1-12
Author(s):  
J. Mohamedmoideen Kader Mastan ◽  
R. Pandian

2018 ◽  
Vol 29 (07) ◽  
pp. 1850058 ◽  
Author(s):  
Nabil Ben Slimane ◽  
Nahed Aouf ◽  
Kais Bouallegue ◽  
Mohsen Machhout

In this paper, an efficient scheme for image encryption based on the nested chaotic map and deoxyribonucleic acid (DNA) is introduced. In order to generate the initial condition values of the nested chaotic system, the Secure Hash Algorithm SHA-256 is used. The algorithm consists of two main layers: confusion and diffusion. In the first layer, the nested chaotic map is employed to create the scrambled image. The scrambled image is obtained through the ascending sorting of the first component of the nested chaotic index sequence. To ensure higher sensitivity, higher complexity and higher security, DNA sequence and DNA operator are employed additionally with the nested chaotic map and hash algorithm to modify the pixel values. The important advantages of our algorithm are the improvement of Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI) and entropy, which improve resistivity against several attacks. Experimental results and relevant security analysis demonstrated that our proposed encryption scheme has the highest security level because it is more complicated, and it has a sufficiently large key space. The proposed method is compared to other recent image encryption schemes using different security analysis factors, including NPCR, UACI, correlation coefficients (CCs), encryption quality (EQ) and entropy. It is also resistant to noise (Salt and Pepper, Gaussian and speckle) and data loss attacks. The illustrated results demonstrated that the proposed image encryption scheme is efficient, and can be adopted for image encryption and transmission.


2012 ◽  
Vol 241-244 ◽  
pp. 2728-2731
Author(s):  
Yong Zhang

Some chaos-based image encryption schemes using plain-images independent secret code streams have weak encryption security and are vulnerable to chosen plaintext and chosen cipher-text attacks. This paper proposed a two-level secret key image encryption method, where the first-level secret key is the private symmetric secret key, and the second-level secret key is derived from both the first-level secret key and the plain image by iterating piecewise linear map and Logistic map. Even though the first-level key is identical, the different plain images will produce different second-level secret keys and different secret code streams. The results show that the proposed has high encryption speed, and also can effectively resist chosen/known plaintext attacks.


Author(s):  
Yamini Jain ◽  
Ritesh Bansal ◽  
Gaurav Sharma ◽  
Bhuvnesh Kumar ◽  
Shailender Gupta

Sign in / Sign up

Export Citation Format

Share Document