A Unified Automated Parametric Modeling Algorithm Using Knowledge-Based Neural Network and ${l}_{1}$ Optimization

2017 ◽  
Vol 65 (3) ◽  
pp. 729-745 ◽  
Author(s):  
Weicong Na ◽  
Feng Feng ◽  
Chao Zhang ◽  
Qi-Jun Zhang
2011 ◽  
Vol 105-107 ◽  
pp. 2169-2173
Author(s):  
Zong Chang Xu ◽  
Xue Qin Tang ◽  
Shu Feng Huang

Wavelet Neural Network (WNN) integration modeling based on Rough Set (RS) is studied. An integration modeling algorithm named RS-WNN, which first introduces a heuristic attribute reduction recursion algorithm to determine the optimum decision attributes and then conducts WNN modeling, is proposed. This method is adopted to more effectively eliminate the redundant attributes, lower the structure complexity of WNN, which reduce the time of training and improve the generalization ability of WNN. The result of the experiment shows this method is superior and efficient.


2006 ◽  
Vol 45 (06) ◽  
pp. 610-621 ◽  
Author(s):  
A. T. Tzallas ◽  
P. S. Karvelis ◽  
C. D. Katsis ◽  
S. Giannopoulos ◽  
S. Konitsiotis ◽  
...  

Summary Objectives: The aim of the paper is to analyze transient events in inter-ictal EEG recordings, and classify epileptic activity into focal or generalized epilepsy using an automated method. Methods: A two-stage approach is proposed. In the first stage the observed transient events of a single channel are classified into four categories: epileptic spike (ES), muscle activity (EMG), eye blinking activity (EOG), and sharp alpha activity (SAA). The process is based on an artificial neural network. Different artificial neural network architectures have been tried and the network having the lowest error has been selected using the hold out approach. In the second stage a knowledge-based system is used to produce diagnosis for focal or generalized epileptic activity. Results: The classification of transient events reported high overall accuracy (84.48%), while the knowledge-based system for epilepsy diagnosis correctly classified nine out of ten cases. Conclusions: The proposed method is advantageous since it effectively detects and classifies the undesirable activity into appropriate categories and produces a final outcome related to the existence of epilepsy.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hari P. N. Nagarajan ◽  
Hossein Mokhtarian ◽  
Hesam Jafarian ◽  
Saoussen Dimassi ◽  
Shahriar Bakrani-Balani ◽  
...  

Additive manufacturing (AM) continues to rise in popularity due to its various advantages over traditional manufacturing processes. AM interests industry, but achieving repeatable production quality remains problematic for many AM technologies. Thus, modeling different process variables in AM using machine learning can be highly beneficial in creating useful knowledge of the process. Such developed artificial neural network (ANN) models would aid designers and manufacturers to make informed decisions about their products and processes. However, it is challenging to define an appropriate ANN topology that captures the AM system behavior. Toward that goal, an approach combining dimensional analysis conceptual modeling (DACM) and classical ANNs is proposed to create a new type of knowledge-based ANN (KB-ANN). This approach integrates existing literature and expert knowledge of the AM process to define a topology for the KB-ANN model. The proposed KB-ANN is a hybrid learning network that encompasses topological zones derived from knowledge of the process and other zones where missing knowledge is modeled using classical ANNs. The usefulness of the method is demonstrated using a case study to model wall thickness, part height, and total part mass in a fused deposition modeling (FDM) process. The KB-ANN-based model for FDM has the same performance with better generalization capabilities using fewer weights trained, when compared to a classical ANN.


Author(s):  
D. A. Hoeltzel ◽  
W.-H. Chieng

Abstract A new knowledge-based approach for the synthesis of mechanisms, referred to as Pattern Matching Synthesis, has been developed based on committee machine and Hopfield neural network models of pattern matching applied to coupler curves. Computational tests performed on a dimensionally parameterized four bar mechanism have yielded 15 distinct coupler curve groups (patterns) from a total of 356 generated coupler curves. This innovative approach represents a first step toward the automation of mapping structure-to-function in mechanism design based on the application of artificial intelligence programming techniques.


Author(s):  
Mukui Saxena ◽  
Rohinton K. Irani

Abstract This paper describes a new, and unique, system for design and analysis of a family of parts with a specific focus on gas turbine nozzles. The system, built on the tenets of knowledge-based engineering (KBE) within an object-oriented framework, supports the notion of scalable products that can be resized through reparametrization. The KBE system for the parametric design of nozzles has been integrated with a Topology and Geometry Utility System (TAGUS) and geometry-based mesh generators (QUADTREE and EXTREME) to develop a turnkey system. The resulting system is shown to help reduce the design cycle time and to increase engineering productivity by representing design and manufacturing information as part of the complete product definition.


Sign in / Sign up

Export Citation Format

Share Document