Knowledge-Based Parametric Modeling for Nozzles

Author(s):  
Mukui Saxena ◽  
Rohinton K. Irani

Abstract This paper describes a new, and unique, system for design and analysis of a family of parts with a specific focus on gas turbine nozzles. The system, built on the tenets of knowledge-based engineering (KBE) within an object-oriented framework, supports the notion of scalable products that can be resized through reparametrization. The KBE system for the parametric design of nozzles has been integrated with a Topology and Geometry Utility System (TAGUS) and geometry-based mesh generators (QUADTREE and EXTREME) to develop a turnkey system. The resulting system is shown to help reduce the design cycle time and to increase engineering productivity by representing design and manufacturing information as part of the complete product definition.

2013 ◽  
Vol 834-836 ◽  
pp. 1432-1435
Author(s):  
Yu Yang

Traditional agricultural machinery design methods usually go through longer-design cycle and can hardly make good use of existing knowledge and experience. In view of this problem, parametric design theory and knowledge-based engineering were applied to the disc-scoop-type metering device designed to improve the design experience and reuse design knowledge. Through the knowledge-based parametric design method, the design framework model of disc-scoop-type metering device was put forward. The knowledge library on the basis of design rules and characteristic similarity-based case library were created, and disc-scoop-type metering device parametric design system based on knowledge had been developed on the platform of Pro/Engineering. The rapid design for knowledge-driven model of disc-scoop-type metering device was realized. The specific design examples clearly indicated that the establishment of the system considerately improved the quality and efficiency of the design.


2011 ◽  
Vol 130-134 ◽  
pp. 641-645
Author(s):  
Yong Cun Guo ◽  
Zhu Fen Wang ◽  
Kun Hu ◽  
Gang Cheng

Using the APDL (ANSYS Parametric Design Language) and combining the object-oriented visual design interface of VB, the parametric analysis and modeling system of belt conveyor driving drum is established. With the system, the designers only need to enter the right design parameters to generate the driving drum model and the corresponding post-processing results instead of the repetitive work. It improves efficiency and provides a basis for designing the suitable driving drum. The correctness and feasibility of the system was verified by analyzing examples.


2013 ◽  
Vol 753-755 ◽  
pp. 1262-1265
Author(s):  
Mo Wu Lu ◽  
Xu Yang ◽  
Chang Lu

This paper introduces a parametric modeling method of wave spring. The common wave spring parametric design programs are written with VBA in the SolidWorks platform by calling the relevant API (application program interface) functions according to the spring entity structure characteristics and service conditions, which obviously reduces the designers repetitive operations in the modeling process and shortens the spring design cycle.


Author(s):  
J. H. Garrett ◽  
A. Jain

The design of electronic power transformers is an activity that requires the application of well-established algorithms from electromagnetic theory and heuristic, judgmental techniques derived from experience in the design and manufacturing of these devices. This paper describes an object-oriented knowledge-based system, Encore, that was developed at Houston Downhole Sensors (a division of Schlumberger Well Services). Encore combines object-oriented, rule-based, and procedural programming techniques to design 60 Hz power transformers. The system uses a heuristic search strategy to generate design alternatives, and then selects the “best” design based on size and efficiency considerations The heuristics are represented and applied as rules; the electromagnetic components are modelled as frame-like objects. The object-oriented nature of this system facilitated enhancements; by specializing some of the objects comprising a power transformer, a power inductor model was quickly developed. Encore reduces design time from a couple of days to less than an hour; it is being used to design the transformers and inductors of power supplies in new Schlumberger well-logging tools. The system was implemented on a Xerox interlisp Workstation using an object-oriented environment called STROBE.


2010 ◽  
Vol 145 ◽  
pp. 567-572
Author(s):  
Hua Ding ◽  
Zhao Jian Yang ◽  
Xue Wen Wang ◽  
Zhi Yong Ding

Based on the concept of parametric design, this paper realizes the parametric modeling and parametric finite element analysis by utilizing UG/OPEN secondary development tool and APDL module of ANSYS software respectively. This paper also achieves data sharing of CAD/CAE through compiling interface program between UG6.0 and ANSYS10.0. In addition, the remote design and analysis platform has been built by using ASP.NET technology, component technology, and database technology. We take piston-piston rod part of coal mining machine’s cutting unit as an example to verify the system. Meanwhile, it proves system can effectively shorten design and analysis cycle time, and reduce workload of designer. Therefore, this software has potential application value in engineering.


2021 ◽  
Vol 11 (5) ◽  
pp. 2326
Author(s):  
Claudio Favi ◽  
Roberto Garziera ◽  
Federico Campi

Welding is a consolidated technology used to manufacture/assemble large products and structures. Currently, welding design issues are tackled downstream of the 3D modeling, lacking concurrent development of design and manufacturing engineering activities. This study aims to define a method to formalize welding knowledge that can be reused as a base for the development of an engineering design platform, applying design for assembly method to assure product manufacturability and welding operations (design for welding (DFW)). The method of ontology (rule-based system) is used to translate tacit knowledge into explicit knowledge, while geometrical feature recognition with parametric modeling is adopted to couple geometrical information with the identification of welding issues. Results show how, within the design phase, manufacturing issues related to the welding operations can be identified and fixed. Two metal structures (a jack adapter of a heavy-duty prop and a lateral frame of a bracket structure) fabricated with arc welding processes were used as case studies and the following benefits were highlighted: (i) anticipation of welding issues related to the product geometry and (ii) reduction of effort and time required for the design review. In conclusion, this research moves forward toward the direction of concurrent engineering, closing the gap between design and manufacturing.


Sign in / Sign up

Export Citation Format

Share Document