scholarly journals An Equivalent Circuit Model for Nested Split-Ring Resonators

2017 ◽  
Vol 65 (10) ◽  
pp. 3733-3743
Author(s):  
Burak Ozbey ◽  
Ayhan Altintas ◽  
Hilmi Volkan Demir ◽  
Vakur B. Erturk
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Victor Sanz ◽  
Angel Belenguer ◽  
Alejandro L. Borja ◽  
Joaquin Cascon ◽  
Hector Esteban ◽  
...  

A new equivalent circuit for a coplanar waveguide loaded with split ring resonators is presented. The traditional circuits that model these devices are only able to characterize the left-handed propagation band, and their response is very similar to the real one within a very limited bandwidth. In contrast, this proposed broadband equivalent circuit is able to portray not only the left-handed propagation band, but also the right-handed one that occurs at higher frequencies. Besides, the response of this kind of basic cells can be adjusted with the proposed circuit model in a bandwidth close to a decade.


2021 ◽  
Vol 35 (11) ◽  
pp. 1378-1379
Author(s):  
Brinta Chowdhury ◽  
Thisara Walpita ◽  
B. Yang ◽  
A. Eroglu

The resonant characteristics of single split ring resonator-based metamaterial devices with single gap are presented using the analytical formulation developed for the lumped element equivalent circuit model. The characteristics of the metamaterial resonators have been investigated for different ring sizes, gap widths and substrate permittivity. Equivalent circuit model is developed for two ring structures. The analytical, and simulation results are compared and verified. The prototype has been then built and measured. It has been observed that all the results agree. The results presented in this paper can be used to develop devices at the THz range that can operate as sensors, antennas or tuning elements.


Metamaterials ◽  
2009 ◽  
Vol 3 (2) ◽  
pp. 57-62 ◽  
Author(s):  
V. Delgado ◽  
O. Sydoruk ◽  
E. Tatartschuk ◽  
R. Marqués ◽  
M.J. Freire ◽  
...  

2015 ◽  
Vol 62 (11) ◽  
pp. 901-907 ◽  
Author(s):  
Tiejun Zhang ◽  
Wei Xiong ◽  
Bo Zhao ◽  
Jinglin Shen ◽  
Chuankai Qiu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1812
Author(s):  
Mohammad Saeid Ghaffarian ◽  
Gholamreza Moradi ◽  
Somayyeh Khajehpour ◽  
Mohammad Mahdi Honari ◽  
Rashid Mirzavand

A novel dual-band/dual-mode compact hybrid coupler which acts as a dual-band branch-line coupler at the lower band and as a rat-race coupler at the higher band is presented in this paper. One of the most interesting features of the proposed structure is that outputs of the proposed coupler in each mode of operation are on the same side. This unique design is implemented using artificial transmission lines (ATLs) based on open split ring resonators (OSRR). The low-cost miniaturized coupler could be operated as a dual-band 90° branch-line coupler at 3.3 and 3.85 GHz and 180° rat-race coupler at 5.3 GHz. The proposed coupler could be utilized in the antenna array feeding circuit to form the antenna beam. The structure’s analytical circuit design based on its equivalent circuit model is provided and verified by measurement results.


Sign in / Sign up

Export Citation Format

Share Document