Singularities in Complete Bipartite Graph-Type Boltzmann Machines and Upper Bounds of Stochastic Complexities

2005 ◽  
Vol 16 (2) ◽  
pp. 312-324 ◽  
Author(s):  
K. Yamazaki ◽  
S. Watanabe
2020 ◽  
Vol 54 (4) ◽  
pp. 1077-1086
Author(s):  
Arezoo N. Ghameshlou ◽  
Athena Shaminezhad ◽  
Ebrahim Vatandoost ◽  
Abdollah Khodkar

Let G = (V, E) be a graph. The function f : V(G) → {−1, 1} is a signed dominating function if for every vertex v ∈ V(G), ∑x∈NG[v] f(x)≥1. The value of ω(f) = ∑x∈V(G) f(x) is called the weight of f. The signed domination number of G is the minimum weight of a signed dominating function of G. In this paper, we initiate the study of the signed domination numbers of Mycielski graphs and find some upper bounds for this parameter. We also calculate the signed domination number of the Mycielski graph when the underlying graph is a star, a wheel, a fan, a Dutch windmill, a cycle, a path or a complete bipartite graph.


10.37236/8458 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Matija Bucic ◽  
Shoham Letzter ◽  
Benny Sudakov

The k$-colour bipartite Ramsey number of a bipartite graph $H$ is the least integer $N$ for which every $k$-edge-coloured complete bipartite graph $K_{N,N}$ contains a monochromatic copy of $H$. The study of bipartite Ramsey numbers was initiated over 40 years ago by Faudree and Schelp and, independently, by Gyárfás and Lehel, who determined the $2$-colour bipartite Ramsey number of paths. Recently the $3$-colour Ramsey number of paths and (even) cycles, was essentially determined as well. Improving the results of DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy, in this paper we determine asymptotically the $4$-colour bipartite Ramsey number of paths and cycles. We also provide new upper bounds on the $k$-colour bipartite Ramsey numbers of paths and cycles which are close to being tight.


10.37236/6257 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Benny Sudakov ◽  
Jacques Verstraete

Burr and Erdős conjectured that for each $k,\ell \in \mathbb Z^+$ such that $k \mathbb Z + \ell$ contains even integers, there exists $c_k(\ell)$ such that any graph of average degree at least $c_k(\ell)$ contains a cycle of length $\ell$ mod $k$. This conjecture was proved by Bollobás, and many successive improvements of upper bounds on $c_k(\ell)$ appear in the literature. In this short note, for $1 \leq \ell \leq k$, we show that $c_k(\ell)$ is proportional to the largest average degree of a $C_{\ell}$-free graph on $k$ vertices, which determines $c_k(\ell)$ up to an absolute constant. In particular, using known results on Turán numbers for even cycles, we obtain $c_k(\ell) = O(\ell k^{2/\ell})$ for all even $\ell$, which is tight for $\ell \in \{4,6,10\}$. Since the complete bipartite graph $K_{\ell - 1,n - \ell + 1}$ has no cycle of length $2\ell$ mod $k$, it also shows $c_k(\ell) = \Theta(\ell)$ for $\ell = \Omega(\log k)$.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Syed Khalid Nauman ◽  
Basmah H. Shafee

AbstractRecently, an interest is developed in estimating genus of the zero-divisor graph of a ring. In this note we investigate genera of graphs of a class of zero-divisor rings (a ring in which every element is a zero divisor). We call a ring R to be right absorbing if for a; b in R, ab is not 0, then ab D a. We first show that right absorbing rings are generalized right Klein 4-rings of characteristic two and that these are non-commutative zero-divisor local rings. The zero-divisor graph of such a ring is proved to be precisely the union of a complete graph and a complete bipartite graph. Finally, we have estimated lower and upper bounds of the genus of such a ring.


2018 ◽  
Vol 9 (12) ◽  
pp. 2147-2152
Author(s):  
V. Raju ◽  
M. Paruvatha vathana

10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Sign in / Sign up

Export Citation Format

Share Document