scholarly journals Multicolour Bipartite Ramsey Number of Paths

10.37236/8458 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Matija Bucic ◽  
Shoham Letzter ◽  
Benny Sudakov

The k$-colour bipartite Ramsey number of a bipartite graph $H$ is the least integer $N$ for which every $k$-edge-coloured complete bipartite graph $K_{N,N}$ contains a monochromatic copy of $H$. The study of bipartite Ramsey numbers was initiated over 40 years ago by Faudree and Schelp and, independently, by Gyárfás and Lehel, who determined the $2$-colour bipartite Ramsey number of paths. Recently the $3$-colour Ramsey number of paths and (even) cycles, was essentially determined as well. Improving the results of DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy, in this paper we determine asymptotically the $4$-colour bipartite Ramsey number of paths and cycles. We also provide new upper bounds on the $k$-colour bipartite Ramsey numbers of paths and cycles which are close to being tight.


10.37236/2526 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Paul Horn ◽  
Kevin G. Milans ◽  
Vojtěch Rödl

The degree Ramsey number of a graph $G$, denoted $R_\Delta(G;s)$, is $\min\{\Delta(H)\colon\, H\stackrel{s}{\to} G\}$, where $H\stackrel{s}{\to} G$ means that every $s$-edge-coloring of $H$ contains a monochromatic copy of $G$.  The closed $k$-blowup of a graph is obtained by replacing every vertex with a clique of size $k$ and every edge with a complete bipartite graph where both partite sets have size $k$.  We prove that there is a function $f$ such that $R_\Delta(G;s) \le f(\Delta(G), s)$  when $G$ is a closed blowup of a tree.



2019 ◽  
Vol 28 (06) ◽  
pp. 871-880
Author(s):  
R. Javadi ◽  
F. Khoeini ◽  
G. R. Omidi ◽  
A. Pokrovskiy

AbstractFor given graphs G1,…, Gk, the size-Ramsey number $\hat R({G_1}, \ldots ,{G_k})$ is the smallest integer m for which there exists a graph H on m edges such that in every k-edge colouring of H with colours 1,…,k, H contains a monochromatic copy of Gi of colour i for some 1 ≤ i ≤ k. We denote $\hat R({G_1}, \ldots ,{G_k})$ by ${\hat R_k}(G)$ when G1 = ⋯ = Gk = G.Haxell, Kohayakawa and Łuczak showed that the size-Ramsey number of a cycle Cn is linear in n, ${\hat R_k}({C_n}) \le {c_k}n$ for some constant ck. Their proof, however, is based on Szemerédi’s regularity lemma so no specific constant ck is known.In this paper, we give various upper bounds for the size-Ramsey numbers of cycles. We provide an alternative proof of ${\hat R_k}({C_n}) \le {c_k}n$ , avoiding use of the regularity lemma, where ck is exponential and doubly exponential in k, when n is even and odd, respectively. In particular, we show that for sufficiently large n we have ${\hat R_2}({C_n}) \le {10^5} \times cn$ , where c = 6.5 if n is even and c = 1989 otherwise.



10.37236/538 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhang Rui ◽  
Sun Yongqi

Given bipartite graphs $H_1$ and $H_2$, the bipartite Ramsey number $b(H_1; H_2)$ is the smallest integer $b$ such that any subgraph $G$ of the complete bipartite graph $K_{b,b}$, either $G$ contains a copy of $H_1$ or its complement relative to $K_{b,b}$ contains a copy of $H_2$. It is known that $b(K_{2,2};K_{2,2})=5, b(K_{2,3};K_{2,3})=9, b(K_{2,4};K_{2,4})=14$ and $b(K_{3,3};K_{3,3})=17$. In this paper we study the case $H_1$ being even cycles and $H_2$ being $K_{2,2}$, prove that $b(C_6;K_{2,2})=5$ and $b(C_{2m};K_{2,2})=m+1$ for $m\geq 4$.



Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 764
Author(s):  
Yaser Rowshan ◽  
Mostafa Gholami ◽  
Stanford Shateyi

For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.



1993 ◽  
Vol 113 (1-3) ◽  
pp. 259-262 ◽  
Author(s):  
P. Erdo˝s ◽  
C.C. Rousseau


10.37236/7816 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Martin Balko ◽  
Josef Cibulka ◽  
Karel Král ◽  
Jan Kynčl

An ordered graph is a pair $\mathcal{G}=(G,\prec)$ where $G$ is a graph and $\prec$ is a total ordering of its vertices. The ordered Ramsey number $\overline{R}(\mathcal{G})$ is the minimum number $N$ such that every ordered complete graph with $N$ vertices and with edges colored by two colors contains a monochromatic copy of $\mathcal{G}$. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings $\mathcal{M}_n$ on $n$ vertices for which $\overline{R}(\mathcal{M}_n)$ is superpolynomial in $n$. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number $\overline{R}(\mathcal{G})$ is polynomial in the number of vertices of $\mathcal{G}$ if the bandwidth of $\mathcal{G}$ is constant or if $\mathcal{G}$ is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by Károlyi, Pach, Tóth, and Valtr.



10.37236/1081 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Tomasz Dzido ◽  
Marek Kubale ◽  
Konrad Piwakowski

For given graphs $G_{1}, G_{2}, ... , G_{k}$, where $k \geq 2$, the multicolor Ramsey number $R(G_{1}, G_{2}, ... , G_{k})$ is the smallest integer $n$ such that if we arbitrarily color the edges of the complete graph on $n$ vertices with $k$ colors, there is always a monochromatic copy of $G_{i}$ colored with $i$, for some $1 \leq i \leq k$. Let $P_k$ (resp. $C_k$) be the path (resp. cycle) on $k$ vertices. In the paper we show that $R(P_3,C_k,C_k)=R(C_k,C_k)=2k-1$ for odd $k$. In addition, we provide the exact values for Ramsey numbers $R(P_{4}, P_{4}, C_{k})=k+2$ and $R(P_{3}, P_{5}, C_{k})=k+1$.



Author(s):  
S. Burr ◽  
P. Erdös ◽  
R.J. Faudree ◽  
C.C. Rousseau ◽  
R.H. Schelp


1978 ◽  
Vol 19 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Robert W. Irving

Beineke and Schwenk [1] have defined the bipartite Ramsey number R(m,n), for integers m, n (1≤m≤n ), to be the smallest integer p such that any 2-colouring of the edges of the complete bipartite graph Kp, v forces the appearance of a monochromatic Km, n. In [1] the following results are established:with equality if there is a Hadamard matrix of order 2(n−1), n odd,if there is a Hadamard matrix of order 4(n−1),



2020 ◽  
Vol 54 (4) ◽  
pp. 1077-1086
Author(s):  
Arezoo N. Ghameshlou ◽  
Athena Shaminezhad ◽  
Ebrahim Vatandoost ◽  
Abdollah Khodkar

Let G = (V, E) be a graph. The function f : V(G) → {−1, 1} is a signed dominating function if for every vertex v ∈ V(G), ∑x∈NG[v] f(x)≥1. The value of ω(f) = ∑x∈V(G) f(x) is called the weight of f. The signed domination number of G is the minimum weight of a signed dominating function of G. In this paper, we initiate the study of the signed domination numbers of Mycielski graphs and find some upper bounds for this parameter. We also calculate the signed domination number of the Mycielski graph when the underlying graph is a star, a wheel, a fan, a Dutch windmill, a cycle, a path or a complete bipartite graph.



Sign in / Sign up

Export Citation Format

Share Document