Fast Automatic Phase and Amplitude Control of High-Power RF Systems

1967 ◽  
Vol 14 (3) ◽  
pp. 205-212
Author(s):  
Robert A. Jameson ◽  
William J. Hoffert
Instruments ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 16 ◽  
Author(s):  
Ram Narayanan ◽  
Kyle Gallagher ◽  
Gregory Mazzaro ◽  
Anthony Martone ◽  
Kelly Sherbondy

Radio frequency (RF) circuit elements that are traditionally considered to be linear frequently exhibit nonlinear properties that affect the intended operation of many other RF systems. Devices such as RF connectors, antennas, attenuators, resistors, and dissimilar metal junctions generate nonlinear distortion that degrades primary RF system performance. The communications industry is greatly affected by these unintended and unexpected nonlinear distortions. The high transmit power and tight channel spacing of the communication channel makes communications very susceptible to nonlinear distortion. To minimize nonlinear distortion in RF systems, specialized circuits are required to measure the low level nonlinear distortions created from traditionally linear devices, i.e., connectors, cables, antennas, etc. Measuring the low-level nonlinear distortion is a difficult problem. The measurement system requires the use of high power probe signals and the capability to measure very weak nonlinear distortions. Measuring the weak nonlinear distortion becomes increasingly difficult in the presence of higher power probe signals, as the high power probe signal generates distortion products in the measurement system. This paper describes a circuit design architecture that achieves 175 dB of dynamic range which can be used to measure low level harmonic distortion from various passive RF circuit elements.


2014 ◽  
Vol 556-562 ◽  
pp. 1806-1810 ◽  
Author(s):  
Long Teng Wang ◽  
Yong Gao Jin

This paper proposes a high-power LED driver circuit with economical high power factor based on universal chip NCP1200. NCP1200 itself doesn’t have the function of APFC, however, by adding a simple amplitude control circuit in the periphery without using special dedicated APFC chip, the APFC rectification mode can be achieved at work, which greatly reduce the pulse current caused by first-time rectification, the power factor can be as high as 98%, and it can achieve the goal of constant current drive in the meantime. The designed circuit is simple, low cost, stable and reliable work ability and it has high cost performance.


1981 ◽  
pp. 1083-1088
Author(s):  
T. Aoki ◽  
K. Adati ◽  
Y. Ohkubo ◽  
T. Watari ◽  
A. Miyahara ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document