Beam Dynamics in a 10-GeV Linear Accelerator for the X-Ray Free Electron Laser at PAL

2009 ◽  
Vol 56 (6) ◽  
pp. 3597-3606 ◽  
Author(s):  
Eun-San Kim ◽  
Moohyun Yoon
2019 ◽  
Vol 26 (2) ◽  
pp. 595-602 ◽  
Author(s):  
Kensuke Tono ◽  
Toru Hara ◽  
Makina Yabashi ◽  
Hitoshi Tanaka

The SPring-8 Ångstrom Compact free-electron LAser (SACLA) began parallel operation of three beamlines (BL1–3) in autumn 2017 to increase the user beam time of the X-ray free-electron laser. The success of the multiple-beamline operation is based on two technological achievements: (i) the fast switching operation of the SACLA main linear accelerator, which provides BL2 and BL3 with pulse-by-pulse electron beams, and (ii) the relocation and upgrade of the SPring-8 Compact SASE Source for BL1, for the generation of a soft X-ray free-electron laser. Moreover, the photon beamlines and experimental stations were upgraded to facilitate concurrent user experiments at the three beamlines and accommodate more advanced experiments.


2016 ◽  
Vol 23 (5) ◽  
pp. 1070-1075 ◽  
Author(s):  
Tim Plath ◽  
Philipp Amstutz ◽  
Jörn Bödewadt ◽  
Günter Brenner ◽  
Nagitha Ekanayake ◽  
...  

Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.


Author(s):  
M. Altarelli

The status of the European X-ray Free-Electron Laser (European XFEL), under construction near Hamburg, Germany, is described. The start of operations of the LCLS at SLAC and of SACLA in Japan has already produced impressive scientific results. The European XFEL facility is powered by a 17.5 GeV superconducting linear accelerator that, compared to these two operating facilities, will generate two orders of magnitude more pulses per second, up to 27 000. It can therefore support modes of operation switching the beam up to 30 times per second among three different experiments, providing each of them with thousands of pulses per second. The scientific possibilities opened up by these capabilities are briefly described, together with the current instrumental developments (in optics, detectors, lasers, etc.) that are necessary to implement this program.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yongfang Liu ◽  
Hiroshi Matsumoto ◽  
Lin Li ◽  
Ming Gu

AbstractX-ray free electron laser (XFEL) facility based on electron linear accelerator (LINAC) is regarded as one kind of the fourth-generation light source with the characteristics of high intensity, exceptional brightness, ultrashort pulse duration, and spatial coherence. In electron linear accelerator, energy of beam bunches is provided by high-power electromagnetic microwaves which are generated by a microwave tube called klystron. The stability of beam voltage of klystron occupies a key position in both the stability of output RF (Radio Frequency) power and the jitter of output RF phase, furthermore, it plays an extremely important role in beam energy stability of electron linear accelerator. In this paper, high power RF fluctuation and phase jitter of klystron output caused by beam voltage instability of klystron are analyzed and calculated. Influence of klystron beam voltage instability on beam energy gain in linear accelerator have also been further analyzed and calculated. The calculating procedure is particularly valuable for us to understand the relationship between pulse modulator stability and beam energy gain fluctuations. Finally, relevant experimental results measured by Shanghai Soft X-ray Free Electron Laser Test Facility (SXFEL-TF) is presented.


2020 ◽  
Vol 14 (6) ◽  
pp. 391-397 ◽  
Author(s):  
W. Decking ◽  
S. Abeghyan ◽  
P. Abramian ◽  
A. Abramsky ◽  
A. Aguirre ◽  
...  

2020 ◽  
Vol 14 (10) ◽  
pp. 650-650
Author(s):  
W. Decking ◽  
S. Abeghyan ◽  
P. Abramian ◽  
A. Abramsky ◽  
A. Aguirre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document