scholarly journals A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator

2020 ◽  
Vol 14 (6) ◽  
pp. 391-397 ◽  
Author(s):  
W. Decking ◽  
S. Abeghyan ◽  
P. Abramian ◽  
A. Abramsky ◽  
A. Aguirre ◽  
...  
2020 ◽  
Vol 14 (10) ◽  
pp. 650-650
Author(s):  
W. Decking ◽  
S. Abeghyan ◽  
P. Abramian ◽  
A. Abramsky ◽  
A. Aguirre ◽  
...  

Instruments ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 47 ◽  
Author(s):  
Vittoria Petrillo ◽  
Michele Opromolla ◽  
Alberto Bacci ◽  
Illya Drebot ◽  
Giacomo Ghiringhelli ◽  
...  

Fine time-resolved analysis of matter—i.e., spectroscopy and photon scattering—in the linear response regime requires fs-scale pulsed, high repetition rate, fully coherent X-ray sources. A seeded Free Electron Laser (FEL) driven by a Linac based on Super Conducting cavities, generating 10 8 – 10 10 coherent photons at 2–5 keV with 0.2–1 MHz of repetition rate, can address this need. Three different seeding schemes, reaching the X-ray range, are described hereafter. The first two are multi-stage cascades upshifting the radiation frequency by a factor of 10–30 starting from a seed represented by a coherent flash of extreme ultraviolet light. This radiation can be provided either by the High Harmonic Generation of an optical laser or by an FEL Oscillator operating at 12–14 nm. The third scheme is a regenerative amplifier working with X-ray mirrors. The whole chain of the X-ray generation is here described by means of start-to-end simulations.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130337 ◽  
Author(s):  
Uwe Weierstall

X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques.


2019 ◽  
Vol 26 (2) ◽  
pp. 595-602 ◽  
Author(s):  
Kensuke Tono ◽  
Toru Hara ◽  
Makina Yabashi ◽  
Hitoshi Tanaka

The SPring-8 Ångstrom Compact free-electron LAser (SACLA) began parallel operation of three beamlines (BL1–3) in autumn 2017 to increase the user beam time of the X-ray free-electron laser. The success of the multiple-beamline operation is based on two technological achievements: (i) the fast switching operation of the SACLA main linear accelerator, which provides BL2 and BL3 with pulse-by-pulse electron beams, and (ii) the relocation and upgrade of the SPring-8 Compact SASE Source for BL1, for the generation of a soft X-ray free-electron laser. Moreover, the photon beamlines and experimental stations were upgraded to facilitate concurrent user experiments at the three beamlines and accommodate more advanced experiments.


2016 ◽  
Vol 23 (5) ◽  
pp. 1070-1075 ◽  
Author(s):  
Tim Plath ◽  
Philipp Amstutz ◽  
Jörn Bödewadt ◽  
Günter Brenner ◽  
Nagitha Ekanayake ◽  
...  

Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.


Sign in / Sign up

Export Citation Format

Share Document