feedback processing
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 105)

H-INDEX

35
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259517
Author(s):  
Katerina Dolguikh ◽  
Tyrus Tracey ◽  
Mark R. Blair

Feedback is essential for many kinds of learning, but the cognitive processes involved in learning from feedback are unclear. Models of category learning incorporate selective attention to stimulus features while generating a response, but during the feedback phase of an experiment, it is assumed that participants receive complete information about stimulus features as well as the correct category. The present work looks at eye tracking data from six category learning datasets covering a variety of category complexities and types. We find that selective attention to task-relevant information is pervasive throughout feedback processing, suggesting a role for selective attention in memory encoding of category exemplars. We also find that error trials elicit additional stimulus processing during the feedback phase. Finally, our data reveal that participants increasingly skip the processing of feedback altogether. At the broadest level, these three findings reveal that selective attention is ubiquitous throughout the entire category learning task, functioning to emphasize the importance of certain stimulus features, the helpfulness of extra stimulus encoding during times of uncertainty, and the superfluousness of feedback once one has learned the task. We discuss the implications of our findings for modelling efforts in category learning from the perspective of researchers trying to capture the full dynamic interaction of selective attention and learning, as well as for researchers focused on other issues, such as category representation, whose work only requires simplifications that do a reasonable job of capturing learning.


2021 ◽  
Author(s):  
Hadi Choubdar ◽  
Mahdi Mahdavi ◽  
Zahra Rostami ◽  
Erfan Zabeh ◽  
Martin J Gillies ◽  
...  

Neural oscillatory activities in basal ganglia have prominent roles in cognitive processes on local and global scales. However, the characteristics of high frequency oscillatory activities during cognitive tasks have not been extensively explored in human Globus Pallidus internus (GPi). This study aimed to investigate amplitude and interhemispheric coupling of bilateral GPi high gamma bursts in dystonia and Parkinson's Disease (PD) patients, in on and off medication states, after feedback during the Intra-Extra-Dimension shift (IED) task. Bilateral GPi Local Field Potentials (LFP) activity was recorded via externalized DBS electrodes during the IED task. Inter hemisphere phase synchrony was assessed using Inter-Site Phase Clustering (ISPC). Transient high gamma activity (~100-150Hz) was observed immediately after feedback in the dystonia patient. Moreover, these bursts were phase synchronous between left and right GPis with an antiphase clustering of phase differences. In contrast, no synchronous high gamma activity was detected in the PD patient with or without dopamine administration. The off-med PD patient displayed enhanced low frequency clusters ameliorated by medication in the on-med state. Furthermore, an increased low frequency activity was observed after feedback of incorrect trials in both disease states. The current study provides a rare report of antiphase homotopic synchrony in human GPi, potentially related to incorporating and processing feedback information. The absence of these activities in off and on-med PD indicates the potential presence of impaired medication independent circuits related to feedback processing. Together, these findings are helpful in pointing to the potential role of GPi's synchronized high frequency activity in cognitive tasks and feedback information processing.


2021 ◽  
Author(s):  
Ran Wang ◽  
Xupeng Chen ◽  
Amirhossein Khalilian-Gourtani ◽  
Leyao Yu ◽  
Patricia Dugan ◽  
...  

AbstractSpeech production is a complex human function requiring continuous feedforward commands together with reafferent feedback processing. These processes are carried out by distinct frontal and posterior cortical networks, but the degree and timing of their recruitment and dynamics remain unknown. We present a novel deep learning architecture that translates neural signals recorded directly from cortex to an interpretable representational space that can reconstruct speech. We leverage state-of-the-art learnt decoding networks to disentangle feedforward vs. feedback processing. Unlike prevailing models, we find a mixed cortical architecture in which frontal and temporal networks each process both feedforward and feedback information in tandem. We elucidate the timing of feedforward and feedback related processing by quantifying the derived receptive fields. Our approach provides evidence for a surprisingly mixed cortical architecture of speech circuitry together with decoding advances that have important implications for neural prosthetics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clémence Lopez ◽  
Laurence Vaivre-Douret

AbstractHandwriting disorders (HD) are considered one of the major public health problems among school-aged children worldwide with significant interference on academic performances. The current study hypothesized that HD could be partly explained by a deficit in sensory feedback processing during handwriting. To explore this hypothesis, we have analyzed the effect of vision suppression on postural-gestural and on spatial/temporal/kinematic organization of drawing during an early pre-scriptural loop task with a digital pen, under two conditions: eyes open and eyes closed. Data collected from 35 children with HD were compared to data collected from typical children (typical group) from primary schools. The HD group showed significantly poorer postural control and an improvement on the spatial/temporal/kinematic organization of drawings when they closed their eyes compared to eyes opened. While in the typical group, postural-gestural organization became significantly more mature but there was no significant influence found on spatial/temporal/kinematic parameters of the loops. Thus, handwriting disorders could be explained by both proprioceptive/kinesthetic feedback disabilities and a disruptive effect of the visual control on the quality of the pre-scriptural drawings among these children who have kinesthetic memory and visuospatial disabilities. The ability of directing the strokes would remain dependent on sensory feedbacks, themselves insufficiently efficient, which would lead to difficulties in reaching a proactive control of handwriting. This current research is a liable contribution to enhance clinical practice, useful in clinical decision-making processes for handwriting disorders remediation.


Author(s):  
Anja Sommer ◽  
Andreas J. Fallgatter ◽  
Christian Plewnia

AbstractMajor depression disorder (MDD) is characterized by cognitive control (CC) dysfunctions associated with increased attention toward negative information. The paced auditory serial addition task (PASAT) has been used as a targeted training of CC and studies show promising effects on depressive symptoms. However, neural mechanisms underlying its efficacy are still unclear. Based on previous findings of feedback-locked event-related potentials in healthy subjects, we investigated neural signatures during PASAT performance in 46 depressed patients. We found significantly larger amplitudes after negative than positive feedback for the P300 and late positive potential (LPP). However, this difference was not significant for the feedback-related negativity (FRN). Moreover, no associations of valence-specific ERPs and PASAT performance nor depressive symptoms were found. This indicates that depressed patients seem unable to use neural activation in late feedback processing stages (P300, LPP) to adapt accordingly. Moreover, lack of valence-specific neural reaction in early feedback processing stages (FRN) might point toward emotional indifference in depressed patients.Trial registration number: NCT03518749 Date of registration: May 8, 2018.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Tilton-Bolowsky ◽  
Sofia Vallila-Rohter ◽  
Yael Arbel

In this study, 38 young adults participated in a probabilistic A/B prototype category learning task under observational and feedback-based conditions. The study compared learning success (testing accuracy) and strategy use (multi-cue vs. single feature vs. random pattern) between training conditions. The feedback-related negativity (FRN) and P3a event related potentials were measured to explore the relationships between feedback processing and strategy use under a probabilistic paradigm. A greater number of participants were found to utilize an optimal, multi-cue strategy following feedback-based training than observational training, adding to the body of research suggesting that feedback can influence learning approach. There was a significant interaction between training phase and strategy on FRN amplitude. Specifically, participants who used a strategy in which category membership was determined by a single feature (single feature strategy) exhibited a significant decrease in FRN amplitude from early training to late training, perhaps due to reduced utilization of feedback or reduced prediction error. There were no significant main or interaction effects between valence, training phase, or strategy on P3a amplitude. Findings are consistent with prior research suggesting that learners vary in their approach to learning and that training method influences learning. Findings also suggest that measures of feedback processing during probabilistic category learning may reflect changes in feedback utilization and may further illuminate differences among individual learners.


Sign in / Sign up

Export Citation Format

Share Document