DC Offset Error Compensation for Synchronous Reference Frame PLL in Single-Phase Grid-Connected Converters

2012 ◽  
Vol 27 (8) ◽  
pp. 3467-3471 ◽  
Author(s):  
Seon-Hwan Hwang ◽  
Liming Liu ◽  
Hui Li ◽  
Jang-Mok Kim
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2308 ◽  
Author(s):  
Jae Lee ◽  
Seon-Hwan Hwang

In a single-phase grid-tied inverter, the direct current (DC) offset error included in the measured grid side phase current has various causes, such as a non-ideal current sensor, unbalanced power supply of an operational amplifier, and nonlinear features of analog components in interface circuits, etc. If the DC offset error is included in the measured current, it causes the secondary harmonic of fundamental frequency and the DC component in grid phase current which result in degradation of inverter performance. In this paper, a theoretical detection method of the secondary harmonic of the fundamental frequency and a DC component in grid phase current for a proportional-resonant (PR) current control system is introduced. Based on the detection method, an algorithm for compensating DC offset error is also presented for single-phase grid-tied inverters. Simulation results and experimental verification of the DC offset error compensation algorithm are shown in this paper.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 112297-112308
Author(s):  
Bin Liu ◽  
Mengjun An ◽  
Hui Wang ◽  
Yanming Chen ◽  
Zhigang Zhang ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 2814-2822

This paper projects a high performance decoupled current control using a dq synchronous reference frame for single-phase inverter. For the three-phase inverter the conversion from AC to DC with Proportional Integral controller grants to obtain steady state error for AC Voltages and currents but has a few challenges with the single-phase systems. Hence, an orthogonal pair (β) is created by shifting the phase by one quarter cycle with respect to the real component (α) which is needed for the transformation from stationary to rotating frame. The synchronous reference frame control theory helps in controlling the AC voltage by using DC signal as the reference with the proportional integrator controllers. The implementation of the control is done with two-stage converter with LCL filter for a single-phase photovoltaic system. A modified MPPT Incremental conductance algorithm along with decoupled current control helps in regulating the active and reactive power infused into the grid where the power factor is improved, the efficiency of the system is increased above 95% and total harmonic distortion for current is also reduced to3%. The results have been validated using MATLAB.


Sign in / Sign up

Export Citation Format

Share Document