A Robust LQG Servo Control Strategy of Shunt-Active Power Filter for Power Quality Enhancement

2016 ◽  
Vol 31 (4) ◽  
pp. 2860-2869 ◽  
Author(s):  
Rakhee Panigrahi ◽  
Bidyadhar Subudhi ◽  
Prafulla Chandra Panda
2017 ◽  
Vol 2 (8) ◽  
pp. 27
Author(s):  
Ahmed Mohammed Attiya Soliman ◽  
Salah Kamal El-Sayed ◽  
M. A. Mehanna

The widespread use of power electronics in industrial, commercial and even residential electrical equipment like non-linear loads causes deterioration of the quality of the electric power supply with distortion of the supply voltage and in order to mitigate this quality the shunt active power filter (SAPF) is the suitable and effective solution for harmonic elimination and reactive power compensation and lead to power quality (PQ) improvement, therefor an effective and accurate current control technique is needed in order for a SAPF where control algorithm is the heart for SAPF to perform this function and its dynamic performance is mainly depends on these control strategy. This paper proposes three different current control strategies (CCS) based on instantaneous power theory and generalized fryze theory which used for the generation or extraction of the accurate reference current signals which comparing with the actual signals through hysteresis current technique (HCT) to produce suitable gating signals for SAPF and discusses the performance for these controllers when the supply bus voltage is distorted with scope on the efficient control algorithm. Matlab / Simulink simulation results are presented to validate the control strategy and demonstrate the effectiveness of SAPF to provide mitigation of power quality problems for non-linear load to reach an acceptable value comply with recommended standards.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 637 ◽  
Author(s):  
Amir A. Imam ◽  
R. Sreerama Kumar ◽  
Yusuf A. Al-Turki

The design of reliable power filters that mitigate current and voltage harmonics to meet the power quality requirements of the utility grid is a major requirement of present-day power systems. In this paper, a detailed systematic approach to design a shunt active power filter (SAPF) for power quality enhancement is discussed. A proportional–integral (PI) controller is adopted to regulate the DC-link voltage. The instantaneous reactive power theory is employed for the reference current’s extraction. Hysteresis current control is used to obtain the gate pulses that control the voltage source inverter (VSI) switches. The detailed SAPF is developed and simulated for balanced nonlinear loads and unbalanced nonlinear loads using MATLAB/Simulink. The simulation results indicate that the proposed filter can minimize the harmonic distortion to a level below that deployed by the Institute of Electrical and Electronics Engineers (IEEE) standards.


Sign in / Sign up

Export Citation Format

Share Document