Distinguishing Internal Winding Faults From Inrush Currents in Power Transformers Using Jiles-Atherton Model Parameters Based on Correlation Coefficient

2012 ◽  
Vol 27 (2) ◽  
pp. 548-553 ◽  
Author(s):  
Sy-Ruen Huang ◽  
Hong-Tai Chen ◽  
Chueh-Cheng Wu ◽  
Chau-Yu Guan ◽  
Chiang Cheng
2015 ◽  
Vol 19 (4) ◽  
pp. 2079-2100 ◽  
Author(s):  
N. Tangdamrongsub ◽  
S. C. Steele-Dunne ◽  
B. C. Gunter ◽  
P. G. Ditmar ◽  
A. H. Weerts

Abstract. The ability to estimate terrestrial water storage (TWS) realistically is essential for understanding past hydrological events and predicting future changes in the hydrological cycle. Inadequacies in model physics, uncertainty in model land parameters, and uncertainties in meteorological data commonly limit the accuracy of hydrological models in simulating TWS. In an effort to improve model performance, this study investigated the benefits of assimilating TWS estimates derived from the Gravity Recovery and Climate Experiment (GRACE) data into the OpenStreams wflow_hbv model using an ensemble Kalman filter (EnKF) approach. The study area chosen was the Rhine River basin, which has both well-calibrated model parameters and high-quality forcing data that were used for experimentation and comparison. Four different case studies were examined which were designed to evaluate different levels of forcing data quality and resolution including those typical of other less well-monitored river basins. The results were validated using in situ groundwater (GW) and stream gauge data. The analysis showed a noticeable improvement in GW estimates when GRACE data were assimilated, with a best-case improvement of correlation coefficient from 0.31 to 0.53 and root mean square error (RMSE) from 8.4 to 5.4 cm compared to the reference (ensemble open-loop) case. For the data-sparse case, the best-case GW estimates increased the correlation coefficient from 0.46 to 0.61 and decreased the RMSE by 35%. For the average improvement of GW estimates (for all four cases), the correlation coefficient increases from 0.6 to 0.7 and the RMSE was reduced by 15%. Only a slight overall improvement was observed in streamflow estimates when GRACE data were assimilated. Further analysis suggested that this is likely due to sporadic short-term, but sizeable, errors in the forcing data and the lack of sufficient constraints on the soil moisture component. Overall, the results highlight the benefit of assimilating GRACE data into hydrological models, particularly in data-sparse regions, while also providing insight on future refinements of the methodology.


Author(s):  
Robson Fabricio Pinto Moreira ◽  
Vinicius Marins Cleff ◽  
Everton Granemann Souza ◽  
Chiara D. Do Nascimento

2019 ◽  
Vol 36 (6) ◽  
pp. 1757-1764
Author(s):  
Saida Saad Mohamed Mahmoud ◽  
Gennaro Esposito ◽  
Giuseppe Serra ◽  
Federico Fogolari

Abstract Motivation Implicit solvent models play an important role in describing the thermodynamics and the dynamics of biomolecular systems. Key to an efficient use of these models is the computation of generalized Born (GB) radii, which is accomplished by algorithms based on the electrostatics of inhomogeneous dielectric media. The speed and accuracy of such computations are still an issue especially for their intensive use in classical molecular dynamics. Here, we propose an alternative approach that encodes the physics of the phenomena and the chemical structure of the molecules in model parameters which are learned from examples. Results GB radii have been computed using (i) a linear model and (ii) a neural network. The input is the element, the histogram of counts of neighbouring atoms, divided by atom element, within 16 Å. Linear models are ca. 8 times faster than the most widely used reference method and the accuracy is higher with correlation coefficient with the inverse of ‘perfect’ GB radii of 0.94 versus 0.80 of the reference method. Neural networks further improve the accuracy of the predictions with correlation coefficient with ‘perfect’ GB radii of 0.97 and ca. 20% smaller root mean square error. Availability and implementation We provide a C program implementing the computation using the linear model, including the coefficients appropriate for the set of Bondi radii, as Supplementary Material. We also provide a Python implementation of the neural network model with parameter and example files in the Supplementary Material as well. Supplementary information Supplementary data are available at Bioinformatics online.


2010 ◽  
Vol 21 (3) ◽  
pp. 1392-1408 ◽  
Author(s):  
Bahador Fani ◽  
M. E. H. Golshan ◽  
H. A. Abyaneh ◽  
M. Saghaian-nejad

Author(s):  
Amin Akrami ◽  
Mohammad Ghaderi ◽  
Saeed Ghadi

Synchronous Study of Ferroresonance and Inrush Current Phenomena and their Related Reasons in Ground Power NetworksEnergizing the power transformers usually results in flowing very high inrush currents. This harmful current can be minimized using controlled switching and considering the value of residual flux. But nowadays, developing the ground power networks results in high increment of ferroresonance phenomenon occurrence due to the line' capacitance reactance and nonlinear inductive reactance of power transformer's core. In this study, these transient phenomena and their cause have studied synchronously.


Sign in / Sign up

Export Citation Format

Share Document