scholarly journals Chance-Constrained Optimal Path Planning With Obstacles

2011 ◽  
Vol 27 (6) ◽  
pp. 1080-1094 ◽  
Author(s):  
Lars Blackmore ◽  
Masahiro Ono ◽  
Brian C. Williams

Autonomous vehicles need to plan trajectories to a specified goal that avoid obstacles. For robust execution, we must take into account uncertainty, which arises due to uncertain localization, modeling errors, and disturbances. Prior work handled the case of set-bounded uncertainty. We present here a chance-constrained approach, which uses instead a probabilistic representation of uncertainty. The new approach plans the future probabilistic distribution of the vehicle state so that the probability of failure is below a specified threshold. Failure occurs when the vehicle collides with an obstacle or leaves an operator-specified region. The key idea behind the approach is to use bounds on the probability of collision to show that, for linear-Gaussian systems, we can approximate the nonconvex chance-constrained optimization problem as a disjunctive convex program. This can be solved to global optimality using branch-and-bound techniques. In order to improve computation time, we introduce a customized solution method that returns almost-optimal solutions along with a hard bound on the level of suboptimality. We present an empirical validation with an aircraft obstacle avoidance example.

2013 ◽  
Vol 467 ◽  
pp. 475-478
Author(s):  
Feng Yun Lin

This paper presents a method of time optimal path planning under kinematic, limit heat characteristics of DC motor and dynamic constrain for a 2-DOF wheeled. Firstly the shortest path is planned by using the geometric method under kinematic constraints. Then, in order to make full use of motors capacity we have the torque limits under limit heat characteristics of DC motor, finally the velocity limit and the boundary acceleration (deceleration) are determined to generate a time optimal path.


2019 ◽  
Vol 69 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Sangeetha Viswanathan ◽  
K. S. Ravichandran ◽  
Anand M. Tapas ◽  
Sellammal Shekhar

 In many of the military applications, path planning is one of the crucial decision-making strategies in an unmanned autonomous system. Many intelligent approaches to pathfinding and generation have been derived in the past decade. Energy reduction (cost and time) during pathfinding is a herculean task. Optimal path planning not only means the shortest path but also finding one in the minimised cost and time. In this paper, an intelligent gain based ant colony optimisation and gain based green-ant (GG-Ant) have been proposed with an efficient path and least computation time than the recent state-of-the-art intelligent techniques. Simulation has been done under different conditions and results outperform the existing ant colony optimisation (ACO) and green-ant techniques with respect to the computation time and path length.


Author(s):  
Nurul Saliha Amani Ibrahim ◽  
Faiz Asraf Saparudin

The path planning problem has been a crucial topic to be solved in autonomous vehicles. Path planning consists operations to find the route that passes through all of the points of interest in a given area. Several algorithms have been proposed and outlined in the various literature for the path planning of autonomous vehicle especially for unmanned aerial vehicles (UAV). The algorithms are not guaranteed to give full performance in each path planning cases but each one of them has their own specification which makes them suitable in sophisticated situation. This review paper evaluates several possible different path planning approaches of UAVs in terms optimal path, probabilistic completeness and computation time along with their application in specific problems.


2015 ◽  
Vol 70 ◽  
pp. 202-214 ◽  
Author(s):  
Alex Shum ◽  
Kirsten Morris ◽  
Amir Khajepour

2007 ◽  
Vol 64 (11) ◽  
pp. 3896-3909 ◽  
Author(s):  
Christopher W. O’Dell ◽  
Peter Bauer ◽  
Ralf Bennartz

Abstract The assimilation of cloud- and rain-affected radiances in numerical weather prediction systems requires fast and accurate radiative transfer models. One of the largest sources of modeling errors originates from the assumptions regarding the vertical and horizontal subgrid-scale variability of model clouds and precipitation. In this work, cloud overlap assumptions are examined in the context of microwave radiative transfer and used to develop an accurate reference model. A fast cloud overlap algorithm is presented that allows for the accurate simulation of microwave radiances with a small number of radiative transfer calculations. In particular, the errors for a typical two-column approach currently used operationally are found to be relatively large for many cases of cloudy fields containing precipitation, even those with an overall cloud fraction of unity; these errors are largely eliminated by using the new approach presented here, at the cost of a slight increase in computation time. Radiative transfer cloud overlap errors are also evident in simulations when compared to actual satellite observations, in that the biases are somewhat reduced when applying a more accurate treatment of cloud overlap.


Sign in / Sign up

Export Citation Format

Share Document