Automatic Generation Control Structure for Smart Power Grids

2012 ◽  
Vol 3 (3) ◽  
pp. 1310-1316 ◽  
Author(s):  
Ali Keyhani ◽  
Abir Chatterjee
Automatica ◽  
2012 ◽  
Vol 48 (9) ◽  
pp. 2130-2136 ◽  
Author(s):  
T. Yu ◽  
B. Zhou ◽  
K.W. Chan ◽  
Y. Yuan ◽  
B. Yang ◽  
...  

2019 ◽  
Vol 87 ◽  
pp. 01012
Author(s):  
B S Durga Kameswari ◽  
Dola Gobinda Padhan

This paper introduces a series cascade control structure for automatic generation control. The control structure consists of two loops such as Primary loop and auxiliary loop (secondary loop). The secondary loop controller is designed using internal model control (IMC) approach. The primary loop controller is a PID controller which is tuned using desired complimentary sensitivity function. The beauty of the control structure is that it effectively nullifies the disturbances entering to the secondary loop as well as primary loop. The efficacy of the proposed controller is shown by comparing the simulation results with the existing methods in the literature.


2019 ◽  
pp. 123-128 ◽  
Author(s):  
Maksim V. Demchenko ◽  
Rostislav O. Ruchkin ◽  
Eugenia P. Simaeva

The article substantiates the expediency of improving the legal support for the introduction and use of energy-efficient lighting equipment, as well as smart networks (Smart Grid), taking into account the ongoing digitalization of the Russian economy and electric power industry. The goal of scientific research is formulated, which is to develop practical recommendations on optimization of the public relations legal regulation in the digital power engineering sector. The research methodology is represented by the interaction of the legal and sociological aspects of the scientific methods system. The current regulatory and legal basis for the transformation of digital electricity relations has been determined. The need to modernize the system of the new technologies introduction legal regulation for generation, storage, transmission of energy, intelligent networks, including a riskbased management model, is established. A set of standardsetting measures was proposed to transform the legal regulation of public relations in the field of energyefficient lighting equipment with the aim of creating and effectively operating a single digital environment, both at the Federal and regional levels. A priority is set for the development of “smart” power grids and highly efficient power equipment in the constituent entities of the Russian Federation through a set of legal, economic (financial), edu cational measures.


Author(s):  
Aurobindo Behera ◽  
Tapas K. Panigrahi ◽  
Arun K. Sahoo

Background: Power system stability demands minimum variation in frequency, so that loadgeneration balance is maintained throughout the operation period. An Automatic Generation Control (AGC) monitors the frequency and varies the generation to maintain the balance. A system with multiple energy sources and use of a fractional controller for efficient control of stability is presented in the paper. At the outset a 2-area thermal system with governor dead band, generation rate constraint and boiler dynamics have been applied. Methods: A variation of load is deliberated for the study of the considered system with Harmony Search (HS) algorithm, applied for providing optimization of controller parameters. Integral Square Time Square Error (ISTSE) is chosen as objective function for handling the process of tuning controller parameters. : A study of similar system with various lately available techniques such as TLBO, hFA-PS and BFOA applied to PID, IDD and PIDD being compared to HS tuned fractional controller is presented under step and dynamic load change. The effort extended to a single area system with reheat thermal plant, hydel plant and a unit of wind plant is tested with the fractional controller scheme. Results: The simulation results provide a clear idea of the superiority of the combination of HS algorithm and FO-PID controller, under dynamically changing load. The variation of load is taken from 1% to 5% of the connected load. Conclusion: Finally, system robustness is shown by modifying essential factors by ± 30%.


Sign in / Sign up

Export Citation Format

Share Document