Optimal Precoder Design for Correlated MIMO Communication Systems Using Zero-Forcing Decision Feedback Equalization

2009 ◽  
Vol 57 (9) ◽  
pp. 3600-3612 ◽  
Author(s):  
Tingting Liu ◽  
Jian-Kang Zhang ◽  
Kon Max Wong
2013 ◽  
Vol 31 (10) ◽  
pp. 1529-1537 ◽  
Author(s):  
Jessica Fickers ◽  
Amirhossein Ghazisaeidi ◽  
Massimiliano Salsi ◽  
Gabriel Charlet ◽  
Philippe Emplit ◽  
...  

1996 ◽  
Vol 42 (4) ◽  
pp. 1062-1071 ◽  
Author(s):  
J.R. Barry ◽  
E.A. Lee ◽  
D.G. Messerschmitt

Author(s):  
Jyoti P. Patra ◽  
Poonam Singh

Most existing quasi-orthogonal space time Block coding (QO-STBC) schemes have been developed relying on the assumption that the channel is at or remains static during the length of the code word symbol periods to achieve an optimal antenna diversity gain. However, in time-selective fading channels, this assumption does not hold and causes intertransmit-antenna-interferences (ITAI). Therefore, the simple pairwise maximum likelihood decoding scheme is not sufficient to recover original transmitted signals at the receiver side. To avoid the interferences, we have analyzed several signal detection schemes, namely zero forcing (ZF), two-step zero forcing (TS-ZF), minimum mean square error (MMSE), zero forcing - interference cancelation - decision feedback equalizer (ZF-IC-DFE) and minimum mean square error - interference cancelation { decision feedback equalizer (MMSE-IC-DFE). We have proposed two efficient iterative signal detection schemes, namely zero forcing - iterative interference cancelation - zero forcing { decision feedback equalization (ZF-IIC-ZF-DFE) and minimum mean square error - parallel interference cancelation - zero forcing – decision feedback equalization (MMSE-IIC-ZF-DFE). The simulation results show that these two proposed detection schemes significantly outperform all conventional methods for QOSTBC system over time selective channel.


Sign in / Sign up

Export Citation Format

Share Document