mimo communication
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 127)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Dariel Pereira-Ruisánchez ◽  
Óscar Fresnedo ◽  
Darian Pérez-Adán ◽  
Luis Castedo

<div>The deep reinforcement learning (DRL)-based deep deterministic policy gradient (DDPG) framework is proposed to solve the joint optimization of the IRS phase-shift matrix and the precoding matrix in an IRS-assisted multi-stream multi-user MIMO communication.<br></div><div><br></div><div>The combination of multiple-input multiple-output(MIMO) communications and intelligent reflecting surfaces(IRSs) is foreseen as a key enabler of beyond 5G (B5G) and 6Gsystems. In this work, we develop an innovative deep reinforcement learning (DRL)-based approach to the joint optimization of the MIMO precoders and the IRS phase-shift matrices that is proved to be efficient in high dimensional systems. The proposed approach is termed deep deterministic policy gradient (DDPG)and maximizes the sum rate of an IRS-assisted multi-stream(MS) multi-user MIMO (MU-MIMO) system by learning the best matrix configuration through online trial-and-error interactions. The proposed approach is formulated in terms of continuous state and action spaces, and a sum-rate-based reward function. The computational complexity is reduced by using artificial neural networks (ANNs) for function approximations and it is shown that the proposed solution scales better than other state-of-the-art methods, while reaching a competitive performance.<br></div>


2022 ◽  
Author(s):  
Dariel Pereira-Ruisánchez ◽  
Óscar Fresnedo ◽  
Darian Pérez-Adán ◽  
Luis Castedo

<div>The deep reinforcement learning (DRL)-based deep deterministic policy gradient (DDPG) framework is proposed to solve the joint optimization of the IRS phase-shift matrix and the precoding matrix in an IRS-assisted multi-stream multi-user MIMO communication.<br></div><div><br></div><div>The combination of multiple-input multiple-output(MIMO) communications and intelligent reflecting surfaces(IRSs) is foreseen as a key enabler of beyond 5G (B5G) and 6Gsystems. In this work, we develop an innovative deep reinforcement learning (DRL)-based approach to the joint optimization of the MIMO precoders and the IRS phase-shift matrices that is proved to be efficient in high dimensional systems. The proposed approach is termed deep deterministic policy gradient (DDPG)and maximizes the sum rate of an IRS-assisted multi-stream(MS) multi-user MIMO (MU-MIMO) system by learning the best matrix configuration through online trial-and-error interactions. The proposed approach is formulated in terms of continuous state and action spaces, and a sum-rate-based reward function. The computational complexity is reduced by using artificial neural networks (ANNs) for function approximations and it is shown that the proposed solution scales better than other state-of-the-art methods, while reaching a competitive performance.<br></div>


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 309
Author(s):  
Muddasar Naeem ◽  
Giuseppe De Pietro ◽  
Antonio Coronato

The current wireless communication infrastructure has to face exponential development in mobile traffic size, which demands high data rate, reliability, and low latency. MIMO systems and their variants (i.e., Multi-User MIMO and Massive MIMO) are the most promising 5G wireless communication systems technology due to their high system throughput and data rate. However, the most significant challenges in MIMO communication are substantial problems in exploiting the multiple-antenna and computational complexity. The recent success of RL and DL introduces novel and powerful tools that mitigate issues in MIMO communication systems. This article focuses on RL and DL techniques for MIMO systems by presenting a comprehensive review on the integration between the two areas. We first briefly provide the necessary background to RL, DL, and MIMO. Second, potential RL and DL applications for different MIMO issues, such as detection, classification, and compression; channel estimation; positioning, sensing, and localization; CSI acquisition and feedback, security, and robustness; mmWave communication and resource allocation, are presented.


Author(s):  
Goran Panic ◽  
Nebojsa Maletic ◽  
Vladica Sark ◽  
Alper Karakuzulu

2021 ◽  
Author(s):  
Yilin Ma ◽  
Cheng-Xiang Wang ◽  
Xiuming Zhu ◽  
Ruofei Ma ◽  
Jie Huang

2021 ◽  
Author(s):  
Yang Wang ◽  
Ndagijimana Cyprien ◽  
Tao Hu ◽  
Xi Liao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document