State Estimation Over a Lossy Network in Spatially Distributed Cyber-Physical Systems

2014 ◽  
Vol 62 (15) ◽  
pp. 3911-3923 ◽  
Author(s):  
Siddharth Deshmukh ◽  
Balasubramaniam Natarajan ◽  
Anil Pahwa
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Nafaâ Jabeur ◽  
Nabil Sahli ◽  
Sherali Zeadally

Wireless sensor networks (WSNs) are key components in the emergent cyber physical systems (CPSs). They may include hundreds of spatially distributed sensors which interact to solve complex tasks going beyond their individual capabilities. Due to the limited capabilities of sensors, sensor actions cannot meet CPS requirements while controlling and coordinating the operations of physical and engineered systems. To overcome these constraints, we explore the ecosystem metaphor for WSNs with the aim of taking advantage of the efficient adaptation behavior and communication mechanisms of living organisms. By mapping these organisms onto sensors and ecosystems onto WSNs, we highlight shortcomings that prevent WSNs from delivering the capabilities of ecosystems at several levels, including structure, topology, goals, communications, and functions. We then propose an agent-based architecture that migrates complex processing tasks outside the physical sensor network while incorporating missing characteristics of autonomy, intelligence, and context awareness to the WSN. Unlike existing works, we use software agents to map WSNs to natural ecosystems and enhance WSN capabilities to take advantage of bioinspired algorithms. We extend our architecture and propose a new intelligent CPS framework where several control levels are embedded in the physical system, thereby allowing agents to support WSNs technologies in enabling CPSs.


2019 ◽  
Vol 30 (11) ◽  
pp. 4303-4330 ◽  
Author(s):  
Nicola Forti ◽  
Giorgio Battistelli ◽  
Luigi Chisci ◽  
Bruno Sinopoli

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yongzhen Guo ◽  
Baijing Han ◽  
Weiping Wang ◽  
Manman Yuan

This paper is concerned with the security state estimation and event-triggered control of cyber-physical systems (CPSs) under malicious attack. Aiming at this problem, a finite-time observer is designed to estimate the state of the system successfully. Then, according to the state information, the event-triggered controller is designed through the event-triggered communication. It is proved that the system is uniformly and finally bounded. Finally, the effectiveness of the proposed method is verified by a simulation example.


2018 ◽  
Vol 41 (6) ◽  
pp. 1571-1579 ◽  
Author(s):  
Hao Zhang ◽  
Chen Peng ◽  
Hongtao Sun ◽  
Dajun Du

This paper investigates the state estimation problem for cyber physical systems under sparse attacks. Firstly, the fundamental state estimation problem is transferred to an optimization problem with a unique solution. Secondly, an adaptive estimation method for sparse attacks is proposed, which convergence property is well proved. The advantage of proposed method is that the step-size can be adaptively adjusted based on the dynamic estimation errors. Therefore, the computing time is less than some existing methods while guaranteeing the desired performance. Then, a suitable state feedback is designed to improve the computing speed while enhancing the resiliency for the destroyed system. Finally, the speed performance and accuracy of proposed algorithm are verified by two numerical examples.


Sign in / Sign up

Export Citation Format

Share Document