In-air and underwater performance and finite element analysis of a flextensional device having electrostrictive poly(vinylidene fluoride-trifluoroethylene) polymers as the active driving element

Author(s):  
Feng Xia ◽  
Zhong-Yang Cheng ◽  
Qirning Zhang
Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2630 ◽  
Author(s):  
Yasin Orooji ◽  
Babak Jaleh ◽  
Fatemeh Homayouni ◽  
Parisa Fakhri ◽  
Mohammad Kashfi ◽  
...  

In this research, piezoelectric polymer nanocomposite films were produced through solution mixing of laser-synthesized Au nanoparticles in poly (vinylidene fluoride) (PVDF) matrix. Synthetization of Au nanoparticles was carried out by laser ablation in N-methyle-2-pyrrolidene (NMP), and then it was added to PVDF: NMP solution with three different concentrations. Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out in order to study the crystalline structure of the nanocomposite films. Results revealed that a remakable change in crystalline polymorph of PVDF has occurred by embedding Au nanoparticles into the polymer matrix. The polar phase fraction was greatly improved by increasing the loading content of Au nanoparticle. Thermogravimetric analysis (TGA) showed that the nanocomposite films are more resistant to high temperature and thermal degradation. An increment in dielectric constant was noticed by increasing the concentration of Au nanoparticles through capacitance, inductance, and resistance (LCR) measurement. Moreover, the mechanical properties of nanocomposites were numerically anticipated by a finite element based micromechanical model. The results reveal an enhancement in both tensile and shear moduli.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Sign in / Sign up

Export Citation Format

Share Document