scholarly journals Joint Work and Voltage/Frequency Scaling for Quality-Optimized Dynamic Thermal Management

2015 ◽  
Vol 23 (6) ◽  
pp. 1017-1030 ◽  
Author(s):  
Ali Mirtar ◽  
Sujit Dey ◽  
Anand Raghunathan
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1423 ◽  
Author(s):  
Valentino Peluso ◽  
Roberto Giorgio Rizzo ◽  
Andrea Calimera

Convolutional Neural Networks (ConvNets) can be shrunk to fit embedded CPUs adopted on mobile end-nodes, like smartphones or drones. The deployment onto such devices encompasses several algorithmic level optimizations, e.g., topology restructuring, pruning, and quantization, that reduce the complexity of the network, ensuring less resource usage and hence higher speed. Several studies revealed remarkable performance, paving the way towards real-time inference on low power cores. However, continuous execution at maximum speed is quite unrealistic due to a fast increase of the on-chip temperature. Indeed, proper thermal management is paramount to guarantee silicon reliability and a safe user experience. Power management schemes, like voltage lowering and frequency scaling, are common knobs to control the thermal stability. Obviously, this implies a performance degradation, often not considered during the training and optimization stages. The objective of this work is to present the performance assessment of embedded ConvNets under thermal management. Our study covers the behavior of two control policies, namely reactive and proactive, implemented through the Dynamic Voltage-Frequency Scaling (DVFS) mechanism available on commercial embedded CPUs. As benchmarks, we used four state-of-the-art ConvNets for computer vision flashed into the ARM Cortex-A15 CPU. With the collected results, we aim to show the existing temperature-performance trade-off and give a more realistic analysis of the maximum performance achievable. Moreover, we empirically demonstrate the strict relationship between the on-chip thermal behavior and the hyper-parameters of the ConvNet, revealing optimization margins for a thermal-aware design of neural network layers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Du ◽  
Zixin Xiong ◽  
Luis Delgado ◽  
Weizhi Liao ◽  
Joseph Peoples ◽  
...  

AbstractThermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Sign in / Sign up

Export Citation Format

Share Document