Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems

2020 ◽  
Vol 69 (4) ◽  
pp. 4575-4579 ◽  
Author(s):  
Yu Wang ◽  
Juan Wang ◽  
Wei Zhang ◽  
Jie Yang ◽  
Guan Gui
2020 ◽  
Author(s):  
Guan Gui ◽  
Yu Wang ◽  
Yue Yin ◽  
Juan Wang ◽  
Jinlong Sun ◽  
...  

Automatic modulation classification (AMC) is one of the most critical technologies for non-cooperative communication systems. Recently, deep learning (DL) based AMC (DL-AMC) methods have attracted significant attention due to their preferable performance. However, the study of most of DL-AMC methods are concentrated in the single-input and single-output (SISO) systems, while there are only a few works on DL-based AMC methods in multiple-input and multiple-output (MIMO) systems. Therefore, we propose in this work a convolutional neural network (CNN) based zero-forcing (ZF) equalization AMC (CNN/ZF-AMC) method for MIMO systems. Simulation results demonstrate that the CNN/ZF-AMC method achieves better performance than the artificial neural network (ANN) with high order cumulants (HOC)-based AMC method under the condition of the perfect channel state information (CSI). Moreover, we also explore the impact of the imperfect CSI on the performance of the CNN/ZF-AMC method. Simulation results demonstrated that the classification performance is not only influenced by the imperfect CSI, but also associated with the number of the transmit and receive antennas.<br>


2020 ◽  
Author(s):  
Yu Wang ◽  
Juan Wang ◽  
Jie Yang ◽  
Wei Zhang ◽  
Guan Gui

Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative AMC (Co-AMC) method for the MIMO systems, where the receiver equipped with multiple antennas cooperatively recognizes the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then, the decision maker identifies the modulation types with the recognition sub-results and cooperative decision rules, such as direct voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based traditional AMC methods, which shows the effective feature extraction and powerful classification capabilities of the CNN.


2020 ◽  
Author(s):  
Yu Wang ◽  
Juan Wang ◽  
Jie Yang ◽  
Wei Zhang ◽  
Guan Gui

Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative AMC (Co-AMC) method for the MIMO systems, where the receiver equipped with multiple antennas cooperatively recognizes the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then, the decision maker identifies the modulation types with the recognition sub-results and cooperative decision rules, such as direct voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based traditional AMC methods, which shows the effective feature extraction and powerful classification capabilities of the CNN.


2020 ◽  
Author(s):  
Guan Gui ◽  
Yu Wang ◽  
Yue Yin ◽  
Juan Wang ◽  
Jinlong Sun ◽  
...  

Automatic modulation classification (AMC) is one of the most critical technologies for non-cooperative communication systems. Recently, deep learning (DL) based AMC (DL-AMC) methods have attracted significant attention due to their preferable performance. However, the study of most of DL-AMC methods are concentrated in the single-input and single-output (SISO) systems, while there are only a few works on DL-based AMC methods in multiple-input and multiple-output (MIMO) systems. Therefore, we propose in this work a convolutional neural network (CNN) based zero-forcing (ZF) equalization AMC (CNN/ZF-AMC) method for MIMO systems. Simulation results demonstrate that the CNN/ZF-AMC method achieves better performance than the artificial neural network (ANN) with high order cumulants (HOC)-based AMC method under the condition of the perfect channel state information (CSI). Moreover, we also explore the impact of the imperfect CSI on the performance of the CNN/ZF-AMC method. Simulation results demonstrated that the classification performance is not only influenced by the imperfect CSI, but also associated with the number of the transmit and receive antennas.<br>


Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 924 ◽  
Author(s):  
Duona Zhang ◽  
Wenrui Ding ◽  
Baochang Zhang ◽  
Chunyu Xie ◽  
Hongguang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document