Regenerative cooperative diversity with path selection and equal power consumption in wireless networks

2009 ◽  
Vol 8 (8) ◽  
pp. 3926-3932 ◽  
Author(s):  
Jing Liu ◽  
Kefei Lu ◽  
Xiaodong Cai ◽  
M.N. Murthi
2010 ◽  
Vol E93-B (12) ◽  
pp. 3647-3650
Author(s):  
Bongjhin SHIN ◽  
Hoyoung CHOI ◽  
Daehyoung HONG

2019 ◽  
Vol 9 (22) ◽  
pp. 4974 ◽  
Author(s):  
Michel Matalatala ◽  
Margot Deruyck ◽  
Sergei Shikhantsov ◽  
Emmeric Tanghe ◽  
David Plets ◽  
...  

The rapid development of the number of wireless broadband devices requires that the induced uplink exposure be addressed during the design of the future wireless networks, in addition to the downlink exposure due to the transmission of the base stations. In this paper, the positions and power levels of massive MIMO-LTE (Multiple Input Multiple Output-Long Term Evolution) base stations are optimized towards low power consumption, low downlink and uplink electromagnetic exposure and maximal user coverage. A suburban area in Ghent, Belgium has been considered. The results show that the higher the number of BS antenna elements, the fewer number of BSs the massive MIMO network requires. This leads to a decrease of the downlink exposure (−12% for the electric field and −32% for the downlink dose) and an increase of the uplink exposure (+70% for the uplink dose), whereas both downlink and uplink exposure increase with the number of simultaneous served users (+174% for the electric field and +22% for the uplink SAR). The optimal massive MIMO network presenting the better trade-off between the power consumption, the total dose and the user coverage has been obtained with 37 64-antenna BSs. Moreover, the level of the downlink electromagnetic exposure (electric field) of the massive MIMO network is 5 times lower than the 4G reference scenario.


Sign in / Sign up

Export Citation Format

Share Document