Markov random field models for supervised land cover classification from very high resolution multispectral remote sensing images

Author(s):  
Gabriele Moser ◽  
Sebastiano B. Serpico ◽  
Jon Atli Benediktsson
2019 ◽  
Vol 8 (4) ◽  
pp. 189 ◽  
Author(s):  
Chi Zhang ◽  
Shiqing Wei ◽  
Shunping Ji ◽  
Meng Lu

The study investigates land use/cover classification and change detection of urban areas from very high resolution (VHR) remote sensing images using deep learning-based methods. Firstly, we introduce a fully Atrous convolutional neural network (FACNN) to learn the land cover classification. In the FACNN an encoder, consisting of full Atrous convolution layers, is proposed for extracting scale robust features from VHR images. Then, a pixel-based change map is produced based on the classification map of current images and an outdated land cover geographical information system (GIS) map. Both polygon-based and object-based change detection accuracy is investigated, where a polygon is the unit of the GIS map and an object consists of those adjacent changed pixels on the pixel-based change map. The test data covers a rapidly developing city of Wuhan (8000 km2), China, consisting of 0.5 m ground resolution aerial images acquired in 2014, and 1 m ground resolution Beijing-2 satellite images in 2017, and their land cover GIS maps. Testing results showed that our FACNN greatly exceeded several recent convolutional neural networks in land cover classification. Second, the object-based change detection could achieve much better results than a pixel-based method, and provide accurate change maps to facilitate manual urban land cover updating.


2016 ◽  
Vol 3 (2) ◽  
pp. 127
Author(s):  
Jati Pratomo ◽  
Triyoga Widiastomo

The usage of Unmanned Aerial Vehicle (UAV) has grown rapidly in various fields, such as urban planning, search and rescue, and surveillance. Capturing images from UAV has many advantages compared with satellite imagery. For instance, higher spatial resolution and less impact from atmospheric variations can be obtained. However, there are difficulties in classifying urban features, due to the complexity of the urban land covers. The usage of Maximum Likelihood Classification (MLC) has limitations since it is based on the assumption of the normal distribution of pixel values, where, in fact, urban features are not normally distributed. There are advantages in using the Markov Random Field (MRF) for urban land cover classification as it assumes that neighboring pixels have a higher probability to be classified in the same class rather than a different class. This research aimed to determine the impact of the smoothness (λ) and the updating temperature (Tupd) on the accuracy result (κ) in MRF. We used a UAV VHIR sized 587 square meters, with six-centimetre resolution, taken in Bogor Regency, Indonesia. The result showed that the kappa value (κ) increases proportionally with the smoothness (λ) until it reaches the maximum (κ), then the value drops. The usage of higher (Tupd) has resulted in better (κ) although it also led to a higher Standard Deviations (SD). Using the most optimal parameter, MRF resulted in slightly higher (κ) compared with MLC.


Sign in / Sign up

Export Citation Format

Share Document