Vibration Signal Processing Based Bearing Defect Diagnosis with Transfer Learning

Author(s):  
Canan Tastimur ◽  
Mehmet Karakose ◽  
Erhan Akin
Author(s):  
Anil Kumar ◽  
Rajesh Kumar

Bearing failure is one of the reasons for centrifugal pump breakdown. Existing methods developed for bearing fault diagnosis do not work satisfactorily when the vibration signature of bearing is overlapped by the signature from other defect sources such as an impeller defect. A vibration signal processing scheme making use of ensemble empirical mode decomposition and dual Q-factor wavelet decomposition is proposed to extract information of the bearing defect in a pump. A criterion called as frequency factor is also proposed to find the best decomposition level for the given high and low Q-factor wavelet decomposition parameters. The transient impulses due to bearing defect are effectively extracted separating traces of oscillatory signature of impeller defect and the noise in the signal. The same has been demonstrated using simulation analysis and experimental study. A comparison of the proposed method with existing signal processing methods is also presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850012 ◽  
Author(s):  
F. Sabbaghian-Bidgoli ◽  
J. Poshtan

Signal processing is an integral part in signal-based fault diagnosis of rotary machinery. Signal processing converts the raw data into useful features to make the diagnostic operations. These features should be independent from the normal working conditions of the machine and the external noise. The extracted features should be sensitive only to faults in the machine. Therefore, applying more efficient processing techniques in order to achieve more useful features that bring faster and more accurate fault detection procedure has attracted the attention of researchers. This paper attempts to improve Hilbert–Huang transform (HHT) using wavelet packet transform (WPT) as a preprocessor instead of ensemble empirical mode decomposition (EEMD) to decompose the signal into narrow frequency bands and extract instantaneous frequency and compares the efficiency of the proposed method named “wavelet packet-based Hilbert transform (WPHT)” with the HHT in the extraction of broken rotor bar frequency components from vibration signals. These methods are tested on vibration signals of an electro-pump experimental setup. Moreover, this project applies wavelet packet de-noising to remove the noise of vibration signal before applying both methods mentioned and thereby achieves more useful features from vibration signals for the next stages of diagnosis procedure. The comparison of Hilbert transform amplitude spectrum and the values and numbers of detected instantaneous frequencies using HHT and WPHT techniques indicates the superiority of the WPHT technique to detect fault-related frequencies as an improved form of HHT.


Sign in / Sign up

Export Citation Format

Share Document