Finite element method for analysis of band structures of phononic crystal slabs with Archimedean-like tilings

Author(s):  
Jianbao Li ◽  
Yue-Sheng Wang ◽  
Chuanzeng Zhang
Crystals ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 11 ◽  
Author(s):  
Lin Han ◽  
Yan Zhang ◽  
Xiao-mei Li ◽  
Lin-hua Jiang ◽  
Da Chen

2012 ◽  
Vol 256-259 ◽  
pp. 596-599
Author(s):  
Zong Jian Yao ◽  
Gui Lan Yu ◽  
Yue Sheng Wang

Propagation of flexural vibration in a ternary phononic crystal thin plate with a point defect are explored using finite element method. The thin concrete plate is composed of steel cylinders hemmed around by rubber with a square lattice. Absolute band gaps, point defect bands and transmission response curves with low frequency are investigated. Comparing the results of finite element method with that of improved plane wave expansion method, precise identifications are obtained to identify the point defect states. The results show that the finite element method is suitable for the exploring of flexural vibration propagating in ternary phononic crystal thin plates.


2013 ◽  
Vol 652-654 ◽  
pp. 48-51
Author(s):  
Zong Jian Yao ◽  
Gui Lan Yu ◽  
Yue Sheng Wang ◽  
Wen Jun Hu

In this paper, propagation of flexural vibration in phononic crystal thin plates with straight, bending or branching linear defects are explored using finite element method. The plate is composed of an array of circular crystalline Al2O3 cylinders embedded periodically in the epoxy matrix with a square lattice. The numerical results showed that accurate band structures and transmission response curves could be obtained by finite element method compared with that of improved plane wave expansion method. The exploration indicated that finite element method is efficient and suitable in dealing with the wave propagation in phononic crystal, and displays potential abilities in dealing with complex structures.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ziyang Lian ◽  
Shan Jiang ◽  
Hongping Hu ◽  
Longxiang Dai ◽  
Xuedong Chen ◽  
...  

An enhanced plane wave expansion (PWE) method is proposed to solve piezoelectric phononic crystal (PPC) connected with resonant shunting circuits (PPC-C), which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR) band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.


2012 ◽  
Vol 602-604 ◽  
pp. 1419-1422
Author(s):  
Zong Jian Yao ◽  
Gui Lan Yu ◽  
Yue Sheng Wang

In this paper, propagation of flexural vibration in phononic crystal thin plates with a point defect are explored using finite element method. The plate is composed of an array of circular crystalline Al2O3 cylinders embedded periodically in the epoxy matrix with a square lattice. The point defect is introduced by changing one of the cylinders’ radii. Comparing the results of finite element method with that of improved plane wave expansion method, complete and accurate band structures and transmission response curves are obtained using the former method to identify the point defect eigenmodes and band gaps. The results show that the finite element method is efficient and suitable for the exploring of point defect states of phononic crystal thin plates.


Author(s):  
Y. L. XU ◽  
C. Q. CHEN ◽  
X. G. TIAN

Two dimensional multi-atom Archimedean-like phononic crystals (MAPCs) can be obtained by adding "atoms" at suitable positions in primitive cells of traditional simple lattices. Band structures of solid-solid and solid-air MAPCs are computed by the finite element method in conjunction with the Bloch theory. For the solid-solid system, our results show that the MAPCs can be suitably designed to split and shift band gaps of the corresponding traditional simple phononic crystal (i.e., with only one scatterer inside a primitive cell). For the solid-air system, the MAPCs have more and wider band gaps than the corresponding traditional simple phononic crystal. Numerical calculations for both solid-solid and solid-air MAPCs show that the band gap of traditional simple phononic crystal can be tuned by appropriately adding "atoms" into its primitive cell.


Sign in / Sign up

Export Citation Format

Share Document