scholarly journals An Enhanced Plane Wave Expansion Method to Solve Piezoelectric Phononic Crystal with Resonant Shunting Circuits

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ziyang Lian ◽  
Shan Jiang ◽  
Hongping Hu ◽  
Longxiang Dai ◽  
Xuedong Chen ◽  
...  

An enhanced plane wave expansion (PWE) method is proposed to solve piezoelectric phononic crystal (PPC) connected with resonant shunting circuits (PPC-C), which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR) band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.

2012 ◽  
Vol 256-259 ◽  
pp. 596-599
Author(s):  
Zong Jian Yao ◽  
Gui Lan Yu ◽  
Yue Sheng Wang

Propagation of flexural vibration in a ternary phononic crystal thin plate with a point defect are explored using finite element method. The thin concrete plate is composed of steel cylinders hemmed around by rubber with a square lattice. Absolute band gaps, point defect bands and transmission response curves with low frequency are investigated. Comparing the results of finite element method with that of improved plane wave expansion method, precise identifications are obtained to identify the point defect states. The results show that the finite element method is suitable for the exploring of flexural vibration propagating in ternary phononic crystal thin plates.


2011 ◽  
Vol 216 ◽  
pp. 285-289
Author(s):  
S.X. Du ◽  
X. D. He ◽  
B. Liu ◽  
S. J. Li ◽  
Z.M. Zhang ◽  
...  

In this paper, a new structure of two-dimensional (2D) square-lattice photonic crystal (SLPC) with button-shaped dielectric rods (BSDRs) is designed, and the properties of band gaps are analyzed by Plane Wave Expansion Method (PWM). The optimal samples that possess the width of absolute band gap are obtained by scanning the three parameters: the radius of large circular R in button mark, the ratio of the radius of small circular to the radius of large circular r/R, and the rotating angle of button mark Ө. It is shown that when r/R=0.485, R=0.406um, and Ө =750, the largest absolute band gap of 0.0406 (ωa/2πc) exists for normalized frequencies in the range 0.7501 to 0.7910 (ωa/2πc). Besides,we can get at most five absolute band gaps when r/R=0.485, R=0.406um, and Ө =600.


2017 ◽  
Vol 42 (4) ◽  
pp. 735-742 ◽  
Author(s):  
Denghui Qian ◽  
Zhiyu Shi

Abstract This paper introduces the concept of semi-infinite phononic crystal (PC) on account of the infinite periodicity in x-y plane and finiteness in z-direction. The plane wave expansion and finite element methods are coupled and formulized to calculate the band structures of the proposed periodic elastic composite structures based on the typical geometric properties. First, the coupled plane wave expansion and finite element (PWE/FE) method is applied to calculate the band structures of the Pb/rubber, steel/epoxy and steel/aluminum semi-infinite PCs with cylindrical scatters. Then, it is used to calculate the band structure of the Pb/rubber semi-infinite PC with cubic scatter. Last, the band structure of the rubbercoated Pb/epoxy three-component semi-infinite PC is calculated by the proposed method. Besides, all the results are compared with those calculated by the finite element (FE) method implemented by adopting COMSOL Multiphysics. Numerical results and further analysis demonstrate that the proposed PWE/FE method has strong applicability and high accuracy.


2014 ◽  
Vol 543-547 ◽  
pp. 3900-3903
Author(s):  
Yu Yang He ◽  
Xiao Xiong Jin

Plane wave expansion (PWE) method and finite element method (FEM) are applied to analyze the vibration reduction characteristic of the phononic crystal structural plate, and the results of two methods are consistent. The range of band gap is acquired, which certain frequent elastic wave propagation is forbidden.


2015 ◽  
Vol 29 (20) ◽  
pp. 1550105
Author(s):  
Haojiang Zhao ◽  
Rongqiang Liu ◽  
Chuang Shi ◽  
Hongwei Guo ◽  
Zongquan Deng

Longitudinal vibration of thin phononic crystal plates with a hybrid square-like array of square inserts is investigated. The plane wave expansion method is used to calculate the vibration band structure of the plate. Numerical results show that rotated square inserts can open several vibration gaps, and the band structures are twisted because of the rotation of inserts. Filling fraction and material of the insert affect the change law of the gap width versus the rotation angles of square inserts.


Sign in / Sign up

Export Citation Format

Share Document