Optimization of ultrasound contrast agent for high frequency ultrasound molecular imaging using subharmonic oscillation

Author(s):  
V. Daeichin ◽  
K. Kooiman ◽  
I. Skachkov ◽  
J.G. Bosch ◽  
A.F.W. van der Steen ◽  
...  
2009 ◽  
Vol 31 (4) ◽  
pp. 235-246 ◽  
Author(s):  
Szu-Chia Chen ◽  
Jia-Ling Ruan ◽  
Po-Wen Cheng ◽  
Yueh-Hsun Chuang ◽  
Pai-Chi Li

A thrombus-targeted ultrasound contrast agent bound with tirofiban — a glycoprotein (GP) IIb/IIIa antagonist that can specifically bind to activated platelets in the thrombus — was designed to enhance both the image contrast and thrombolysis effect. In this study, we used 76 canine thrombi for investigation. The targeting ability to thrombi was confirmed by microphotography and high-frequency ultrasound (40 MHz) imaging. The effect of the targeted microbubbles on thrombolysis enhancement was investigated using an in vitro flow system: targeted and nontargeted microbubbles flowed through the clot for 30 seconds with a washing step; the microbubbles remained on the clot that were then cavitated by ultrasound (frequency = 1 MHz, MI = 1.2). The extent of thrombolysis was evaluated by weight reduction and histology analysis. The targeted microbubbles reduced the weight of thrombi by a factor of 1.7 times that of the nontargeted microbubbles. (clot weight reduction: 23.1 ± 5.3% versus 13.6 ± 4.9%, p < 0.01 between targeted and nontargeted group), and the signal enhancement was 3.34 ± 0.30 dB (mean ± SD, p < 0.01 compared to control). We conclude that targeted microbubbles are applicable not only for molecular imaging of thrombi but also for improving the effectiveness of ultrasound-assisted thrombolysis.


2021 ◽  
Author(s):  
Sara Iradji

The microcirculation can be differentiated from the surrounding tissue using high frequency ultrasound subharmonic imaging. This imaging technique relies on the detection of energy scattered from ultrasound contrast agents at half the transmit frequency due to their resonant oscillations. The current contrast agents and the subharmonic imaging parameters have not been optimized for high frequencies. Moreover, the origin of subharmonic generation from submicron bubbles is not well-understood. The size distribution of Definity™ phospholipid-shelled microbubbles was altered to find the optimal bubble size to be resonant over a wide range of high frequencies. The resonant behaviour of bubbles was investigated through in vitro attenuation measurements. The transmit frequency and pressure were varied to optimize the backscattered subharmonic signal. Alteration of Definity™ population significanatly improved the scattering for subharmonic imaging at 20 MHz. A peak negative pressure between 400 to 600 kPa is suggested for this frequency range.


2005 ◽  
Vol 117 (2) ◽  
pp. 964-972 ◽  
Author(s):  
Michael S. Hughes ◽  
Jon N. Marsh ◽  
Christopher S. Hall ◽  
Ralph W. Fuhrhop ◽  
Elizabeth K. Lacy ◽  
...  

2006 ◽  
Vol 1 (6) ◽  
pp. 259-266 ◽  
Author(s):  
A. L. Klibanov ◽  
J. J. Rychak ◽  
W. C. Yang ◽  
S. Alikhani ◽  
B. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document