αvβ3 integrin
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 109)

H-INDEX

74
(FIVE YEARS 6)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Hans-Georg Lerchen ◽  
Beatrix Stelte-Ludwig ◽  
Charlotte Kopitz ◽  
Melanie Heroult ◽  
Dmitry Zubov ◽  
...  

To improve tumor selectivity of cytotoxic agents, we designed VIP236, a small molecule–drug conjugate consisting of an αVβ3 integrin binder linked to a modified camptothecin payload (VIP126), which is released by the enzyme neutrophil elastase (NE) in the tumor microenvironment (TME). The tumor targeting and pharmacokinetics of VIP236 were studied in tumor-bearing mice by in vivo near-infrared imaging and by analyzing tumor and plasma samples. The efficacy of VIP236 was investigated in a panel of cancer cell lines in vitro, and in MX-1, NCI-H69, and SW480 murine xenograft models. Imaging studies with the αVβ3 binder demonstrated efficient tumor targeting. Administration of VIP126 via VIP236 resulted in a 10-fold improvement in the tumor/plasma ratio of VIP126 compared with VIP126 administered alone. Unlike SN38, VIP126 is not a substrate of P-gp and BCRP drug transporters. VIP236 presented strong cytotoxic activity in the presence of NE. VIP236 treatment resulted in tumor regressions and very good tolerability in all in vivo models tested. VIP236 represents a novel approach for delivering a potent cytotoxic agent by utilizing αVβ3 as a targeting moiety and NE in the TME to release the VIP126 payload—designed for high permeability and low efflux—directly into the tumor stroma.


2022 ◽  
Author(s):  
Daniel Abebayehu ◽  
Blaise N. Pfaff ◽  
Grace C. Bingham ◽  
Surabhi Ghatti ◽  
Andrew Miller ◽  
...  

Microporous annealed particle (MAP) hydrogels are an exciting new development in biomaterial design. They regulate innate and acquired immunity which has been linked to their ability to evade normal host-material fibrosis. Yet, resident stromal fibroblasts, not immune cells, are the arbiters of the extracellular matrix assembly that characterizes fibrosis. In other idiopathic fibrotic disorders, a fibroblast subpopulation defined by its loss of cell surface Thy-1 expression is strongly correlated with degree of fibrosis. We have previously shown that Thy-1 is a critical αvβ3 integrin regulator that enables normal fibroblast mechanosensing and here, leveraging non-fibrosing MAP gels, we demonstrate that Thy-1-/- mice mount a robust response to MAP gels that remarkably resembles a classical foreign body response. We further find that within the naive, Thy-1+ fibroblast population exists a distinct and cryptic αSMA+ Thy-1- population that emerges in response to IL-1β and TNFα. Employing single-cell RNA sequencing, we find that IL-1β/TNFα-induced Thy-1- fibroblasts actually consist of two distinct subpopulations, both of which are strongly pro-inflammatory. These findings illustrate the emergence of a unique pro-inflammatory, pro-fibrotic fibroblast subpopulation that is central to material-associated fibrosis likely through amplifying local inflammatory signaling.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262183
Author(s):  
Hong Ki Min ◽  
JeongWon Choi ◽  
Seon-Yeong Lee ◽  
A. Ram Lee ◽  
Byung-Moo Min ◽  
...  

Purpose Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. Methods SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. Results The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1β, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. Conclusions VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Vinicius Pinho dos Reis ◽  
Markus Keller ◽  
Katja Schmidt ◽  
Rainer Günter Ulrich ◽  
Martin Hermann Groschup

The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.


2021 ◽  
Author(s):  
Rui-Jun Bai ◽  
Di Liu ◽  
Yu-Sheng Li ◽  
Jian Tian ◽  
Deng-Jie Yu ◽  
...  

Abstract Background: To investigate whether OPN has an effect on autophagy in human osteoarthritic chondrocytes and determine the roles of CD44, αvβ3 integrin and the MAPK pathway in this progress. Methods: First, we cultured human OA chondrocytes in vitro and then treated cells with rhOPN to determine autophagy changes. Next , the anti-CD44 and anti-CD51/61 monoclonal antibodies (Abs) or isotype IgG were used to determine the possible role of CD44 and αvβ3 integrin; subsequently, an inhibitor of the ERK MAPK pathway was used to investigate the role of ERK MAPK. Western blotting was used to measure the beclin1, LC3 II and MAPK protein expression, and mRFP-GFP-LC3 confocal imaging was used to detect the autophagy levels. CCK-8 was used to assay the proliferation and activity of chondrocytes. Results: Our results showed that the LC3 protein was greatly decreased in OA cartilage compared to normal cartilage ,and OPN suppressed the autophagy activity in chondrocytes in vitro. Blocking experiments with anti-CD44 and anti-CD51/61 Abs indicated that OPN could suppress the expression of LC3II and beclin1 through αvβ3 integrin and CD44. Our results also indicated that the ratio of p-ERK/ ERK but not p-P38/P38 and p-JNK/JNK was increased after the rhOPN treatment. The ERK inhibitor inhibited the activity of OPN in the suppression of autophagy, and the CCK-8 results showed that rhOPN could promote chondrocyte proliferation. Conclusions: OPN inhibited chondrocyte autophagy through CD44 and αvβ3 integrin receptors and via the ERK MAPK signaling pathway.


2021 ◽  
Vol 8 (12) ◽  
pp. 223
Author(s):  
Kaiti Duan ◽  
Biraja C. Dash ◽  
Daniel C. Sasson ◽  
Sara Islam ◽  
Jackson Parker ◽  
...  

Tissue-engineered constructs have immense potential as autologous grafts for wound healing. Despite the rapid advancement in fabrication technology, the major limitation is controlling angiogenesis within these constructs to form a vascular network. Here, we aimed to develop a 3D hydrogel that can regulate angiogenesis. We tested the effect of fibronectin and vascular smooth muscle cells derived from human induced pluripotent stem cells (hiPSC-VSMC) on the morphogenesis of endothelial cells. The results demonstrate that fibronectin increases the number of EC networks. However, hiPSC-VSMC in the hydrogel further substantiated the number and size of EC networks by vascular endothelial growth factor and basic fibroblast growth factor secretion. A mechanistic study shows that blocking αvβ3 integrin signaling between hiPSC-VSMC and fibronectin impacts the EC network formation via reduced cell viability and proangiogenic growth factor secretion. Collectively, this study set forth initial design criteria in developing an improved pre-vascularized construct.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5958
Author(s):  
Susanne Kossatz ◽  
Ambros Johannes Beer ◽  
Johannes Notni

For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvβ3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvβ3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5β1, αvβ6, αvβ8, α6β1, α6β4, α3β1, α4β1, and αMβ2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvβ6, αvβ8, and α6β1/β4, were subsequently translated into humans during the last few years. αvβ6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvβ6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvβ3 by αvβ6 as the most popular integrin in theranostics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katja Steiger ◽  
Neil Gerard Quigley ◽  
Tanja Groll ◽  
Frauke Richter ◽  
Maximilian Alexander Zierke ◽  
...  

Abstract Background In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. Results The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. Conclusions Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6107
Author(s):  
Hiroaki Echigo ◽  
Kenji Mishiro ◽  
Takeshi Fuchigami ◽  
Kazuhiro Shiba ◽  
Seigo Kinuya ◽  
...  

We recently developed 125I- and 211At-labeled monomer RGD peptides using a novel radiolabeling method. Both labeled peptides showed high accumulation in the tumor and exhibited similar biodistribution, demonstrating their usefulness for radiotheranostics. This study applied the labeling method to a dimer RGD peptide with the aim of gaining higher accumulation in tumor tissues based on improved affinity with αvβ3 integrin. We synthesized an iodine-introduced dimer RGD peptide, E[c(RGDfK)] (6), and an 125/131I-labeled dimer RGD peptide, E[c(RGDfK)]{[125/131I]c[RGDf(4-I)K]} ([125/131I]6), and evaluated them as a preliminary step to the synthesis of an 211At-labeled dimer RGD peptide. The affinity of 6 for αvβ3 integrin was higher than that of a monomer RGD peptide. In the biodistribution experiment at 4 h postinjection, the accumulation of [125I]6 (4.12 ± 0.42% ID/g) in the tumor was significantly increased compared with that of 125I-labeled monomer RGD peptide (2.93 ± 0.08% ID/g). Moreover, the accumulation of [125I]6 in the tumor was greatly inhibited by co-injection of an excess RGD peptide. However, a single injection of [131I]6 (11.1 MBq) did not inhibit tumor growth in tumor-bearing mice. We expect that the labeling method for targeted alpha therapy with 211At using a dimer RGD peptide could prove useful in future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document