scholarly journals Cost-benefit analysis of a novel DC fast-charging station with a local battery storage for EVs

Author(s):  
Marjan Gjelaj ◽  
Chresten Traholt ◽  
Seyedmostafa Hashemi ◽  
Peter Bach Andersen
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5095 ◽  
Author(s):  
Abdulla Al Wahedi ◽  
Yusuf Bicer

E-Mobility deployment has attained increased interest during recent years in various countries all over the world. This interest has focused mainly on reducing the reliance on fossil fuel-based means of transportation and decreasing the harmful emissions produced from this sector. To secure the electricity required to satisfy Electric Vehicles’ (EVs’) charging needs without expanding or overloading the existing electricity infrastructure, stand-alone charging stations powered by renewable sources are considered as a reasonable solution. This paper investigates the simulation of the optimal energy management of a proposed grid-independent, multi-generation, fast-charging station in the State of Qatar, which comprises hybrid wind, solar and biofuel systems along with ammonia, hydrogen and battery storage units. The study aims to assess the optimal sizing of the solar, wind and biofuel units to be incorporated in the design along with the optimal ammonia, hydrogen and battery storage capacities to fulfill the daily EV demand in an uninterruptable manner. The main objective is to fast-charge a minimum of 50 EVs daily, while the constraints are the intermittent and volatile nature of renewable energy sources, the stochastic nature of EV demand, local meteorological conditions and land space limitations. The results show that the selection of a 468 kWp concentrated photovoltaic thermal plant, 250 kW-rated wind turbine, 10 kW biodiesel power generator unit and 595 kWh battery storage system, along with the on-site production of hydrogen and ammonia, to generate 200 kW power via fuel cells can achieve the desired target, with a total halt of on-site hydrogen and ammonia production during October and November and 50% reduction during December.


2016 ◽  
Vol 10 (3) ◽  
pp. 815-821 ◽  
Author(s):  
Carlos Mateo ◽  
Álvaro Sánchez ◽  
Pablo Frías ◽  
Andrea Rodriguez-Calvo ◽  
Javier Reneses

2018 ◽  
Vol 10 (10) ◽  
pp. 3371 ◽  
Author(s):  
Xin Li ◽  
Konstantinos Chalvatzis ◽  
Phedeas Stephanides

Cities are concentrations of economic, social, and technical assets, which are fundamental to addressing climate change challenges. Renewable energy sources are growing fast in cities to mitigate greenhouse gas emissions in response to these challenges. In this transition urban decentralized energy shares technical and economic characteristics with energy islands. This is reflected in that island energy systems essentially operate off-grid which as a modus operandi can offer lessons to small-scale urban systems. With the expansion of urban areas, communities, especially small-scale ones, are sometimes further away from the main power infrastructure. Providing power supply to these communities would require significant investment to the existing power system, either to improve its grid infrastructure or power supply facilities. The energy islands have for some time now lent themselves to energy innovation including smart grid and battery storage applications. In this research we conceptualize that urban energy communities can be benefitted by knowledge transfer from energy islands in several fronts. We specifically put forward a life-cycle cost-benefit analysis model to evaluate the economics of battery storage system used in small communities from a life-cycle perspective. In this research we put forward a novel cost-benefit analysis model. Our results show that the inclusion of externalities can improve the economic value of battery systems significantly. Nevertheless, the economic performance is still largely dependent on several parameters, including capacity cost, discharging price, and charging cost. We conclude that existing electricity price structures (e.g., using household electricity price as a benchmark) struggle to guarantee sufficient economic returns except in very favorable circumstances; therefore, governmental support is deemed necessary.


Sign in / Sign up

Export Citation Format

Share Document