Control of Autonomous Robots Using the Principles of Neuromodulation
The paper presents a control approach based on vertebrate neuromodulation and its implementation on an autonomous robot platform. A simple neural network is used to model the neuromodulatory function for generating context based behavioral responses to sensory signals. The neural network incorporates three types of neurons — cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behavior. The implementation of the neuronal model on a relatively simple autonomous robot illustrates its interesting behavior adapting to changes in the environment. The integration of neuromodulation based robots in the study of human-robot interaction would be worth considering in future.