A practical method for simulating pectoral fin locomotion of a biomimetic autonomous underwater vehicle

Author(s):  
Forng-Chen Chiu ◽  
Chi-Kang Chen ◽  
Jenhwa Guo
2019 ◽  
Vol 72 (06) ◽  
pp. 1649-1659
Author(s):  
Qingwei Liang ◽  
Tianyuan Sun ◽  
Junlin Ou

Real multi-Autonomous Underwater Vehicle (AUV) cooperative systems operate in complicated marine environments. The interaction between a multi-AUV cooperative system and its marine environment will affect the reliability of the system. Current is an important influencing factor of multi-AUV cooperative systems. A reliability index of multi-AUV cooperative systems known as System Reliable Probability (SRP) is proposed in this study. A method to calculate SRP is introduced, and the influence of current on SRP is discussed in detail. Current is considered an attack source, and the degree of its influence on SRP is calculated. As an example, the performance of this method is shown on two multi-AUV cooperative systems. Results show that the influence of the same current environment on different structures of the multi-AUV cooperative systems differs. This result provides a reference for the structure selection of multi-AUV systems. This study provides a practical method to estimate the reliability of multi-AUV cooperative systems.


2011 ◽  
Vol 45 (4) ◽  
pp. 99-109 ◽  
Author(s):  
Keith W. Moored ◽  
Frank E. Fish ◽  
Trevor H. Kemp ◽  
Hilary Bart-Smith

AbstractFor millions of years, aquatic species have utilized the principles of unsteady hydrodynamics for propulsion and maneuvering. They have evolved high-endurance swimming that can outperform current underwater vehicle technology in the areas of stealth, maneuverability and control authority. Batoid fishes, including the manta ray, Manta birostris, the cownose ray, Rhinoptera bonasus, and the Atlantic stingray, Dasyatis sabina, have been identified as a high-performing species due to their ability to migrate long distances, maneuver in spaces the size of their tip-to-tip wing span, produce enough thrust to leap out of the water, populate many underwater regions, and attain sustained swimming speeds of 2.8 m/s with low flapping/undulating frequencies. These characteristics make batoid fishes an ideal platform to emulate in the design of a bio-inspired autonomous underwater vehicle. The enlarged pectoral fins of each ray undergoes complex motions that couple spanwise curvature with a chordwise traveling wave to produce thrust and to maneuver. Researchers are investigating these amazing species to understand the biological principles for locomotion. The continuum of swimming motions—from undulatory to oscillatory—demonstrates the range of capabilities, environments, and behaviors exhibited by these fishes. Direct comparisons between observed swimming motions and the underlying cartilage structure of the pectoral fin have been made. A simple yet powerful analytical model to describe the swimming motions of batoid fishes has been developed and is being used to quantify their hydrodynamic performance. This model is also being used as the design target for artificial pectoral fin design. Various strategies have been employed to replicate pectoral fin motion. Active tensegrity structures, electro-active polymers, and fluid muscles are three structure/actuator approaches that have successfully demonstrated pectoral-fin-like motions. This paper explores these recent studies to understand the relationship between form and swimming function of batoid fishes and describes attempts to emulate their abilities in the next generation of bio-inspired underwater vehicles.


2009 ◽  
Author(s):  
Giacomo Marani ◽  
Junku Yuh ◽  
Song K. Choi ◽  
Son-Cheol Yu ◽  
Luca Gambella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document