Visualization of stratospheric ozone depletion and the polar vortex

Author(s):  
L.A. Treinish
2018 ◽  
Vol 45 (4) ◽  
pp. 2115-2124 ◽  
Author(s):  
M. H. Denton ◽  
R. Kivi ◽  
T. Ulich ◽  
M. A. Clilverd ◽  
C. J. Rodger ◽  
...  

2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


1998 ◽  
Vol 16 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Ching-Yuan Chang ◽  
Chih-Yin Ho

Of the major replacements for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) are now accepted as being prime contributors to stratospheric ozone depletion. As a consequence, the development of adsorbents capable of adsorbing and recovering specific HCFCs has received great attention. This paper describes an investigation of the adsorption equilibrium of 1, 1-dichloro-1-fluoroethane (HCFC-141b) vapour on a commercial hydrophobic zeolite. The corresponding Henry, Freundlich and Dubinin–Radushkevich (D–R) equilibrium isotherms have been determined and found to correlate well with the experimental data. Based on the Henry adsorption isotherms obtained at 283, 303 and 313 K. thermodynamic properties such as the enthalpy, free energy and entropy of adsorption have been computed for the adsorption of HCFC-141b vapour on the adsorbent. The results obtained could be useful in the application of HCFC adsorption on the hydrophobic zeolite studied.


Sign in / Sign up

Export Citation Format

Share Document