Corrigendum to “Do cosmic-ray-driven electron-induced reactions impact stratospheric ozone depletion and global climate change?” [Atmos. Environ. 45 (2011), 3408–3514]

2013 ◽  
Vol 68 ◽  
pp. 350 ◽  
Author(s):  
Jens-Uwe Grooß ◽  
Rolf Müller
2013 ◽  
Vol 27 (17) ◽  
pp. 1350073 ◽  
Author(s):  
Q.-B. LU

This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O 3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl 4 and HCFCs), CO 2, total O 3, lower stratospheric temperatures and global surface temperatures. For O 3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O 3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O 3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 ~ 25 % of the Antarctic O 3 hole is found, while no recovery of O 3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO 2 concentration during 1850–1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96–0.97 is found between corrected or uncorrected global surface temperature and total amount of stratospheric halogenated gases during 1970–2012. Furthermore, a new theoretical calculation on the greenhouse effect of halogenated gases shows that they (mainly CFCs) could alone result in the global surface temperature rise of ~0.6°C in 1970–2002. These results provide solid evidence that recent global warming was indeed caused by the greenhouse effect of anthropogenic halogenated gases. Thus, a slow reversal of global temperature to the 1950 value is predicted for coming 5 ~ 7 decades. It is also expected that the global sea level will continue to rise in coming 1 ~ 2 decades until the effect of the global temperature recovery dominates over that of the polar O 3 hole recovery; after that, both will drop concurrently. All the observed, analytical and theoretical results presented lead to a convincing conclusion that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O 3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.


2007 ◽  
Vol 6 (3) ◽  
pp. 232 ◽  
Author(s):  
M. Norval ◽  
A. P. Cullen ◽  
F. R. de Gruijl ◽  
J. Longstreth ◽  
Y. Takizawa ◽  
...  

2005 ◽  
Vol 360 (1454) ◽  
pp. 471-477 ◽  
Author(s):  
Robert T Watson

This paper discusses key issues in the science–policy interface. It stresses the importance of linking the conservation and sustainable use of biodiversity to the Millennium Development Goals and to issues of immediate concern to policy-makers such as the economy, security and human health. It briefly discusses the process of decision-making and how the scientific and policy communities have successfully worked together on global environmental issues such as stratospheric ozone depletion and climate change, and the critical role of international assessments in providing the scientific basis for informed policy at the national and international level. The paper also discusses the drivers of global environmental change, the importance of constructing plausible futures, indicators of change, the biodiversity 2010 target and how environmental issues such as loss of biodiversity, stratospheric ozone depletion, land degradation, water pollution and climate change cannot be addressed in isolation because they are strongly interconnected and there are synergies and trade-offs among the policies, practices and technologies that are used to address these issues individually.


2015 ◽  
Vol 14 (1) ◽  
pp. 127-148 ◽  
Author(s):  
David J. Erickson III ◽  
Barbara Sulzberger ◽  
Richard G. Zepp ◽  
Amy T. Austin

Solar UV radiation and climate change interact to influence and determine the environmental conditions for humans on planet Earth.


Sign in / Sign up

Export Citation Format

Share Document