Sliding mode output feedback controller design using linear matrix inequalities with application to aircraft systems

Author(s):  
Jose Manuel Andrade-Da Silva ◽  
Sarah K. Spurgeon ◽  
Christopher Edwards
Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Yao-Wen Tsai

This study proposes a novel variable structure control (VSC) for the mismatched uncertain systems with unknown time-varying delay. The novel VSC includes the finite-time convergence sliding mode, invariance property, asymptotic stability, and measured output only. A necessary and sufficient condition guaranteeing the existence of sliding surface is given. A novel lemma is established to deal with the control design problem for a wider class of time-delay systems. A suitable reduced-order observer (ROO) is constructed to estimate unmeasured state variables of the systems. A novel finite-time output feedback controller (FTOFC) is investigated, which is based on the ROO tool and the Moore-Penrose inverse technique. Moreover, with the help of this lemma and the proposed FTOFC, restrictions on most existing works are also eliminated. In addition, an asymptotic stability analysis is implemented by means of the feasibility of the linear matrix inequalities (LMIs) and given desirable sliding mode dynamics. Finally, a MATLAB simulation result on a numerical example is performed to show the effectiveness and advantage of the proposed method.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769032 ◽  
Author(s):  
Xiaobao Han ◽  
Zhenbao Liu ◽  
Huacong Li ◽  
Xianwei Liu

This article presents a new output feedback controller design method for polynomial linear parameter varying model with bounded parameter variation rate. Based on parameter-dependent Lyapunov function, the polynomial linear parameter varying system controller design is formulated into an optimization problem constrained by parameterized linear matrix inequalities. To solve this problem, first, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameter-dependent Lyapunov function, controller, and object coefficient matrices. Then, the control solving problem was reduced to a normal convex optimization problem with linear matrix inequalities constraint on a newly constructed convex polyhedron. Moreover, a parameter scheduling output feedback controller was achieved on the operating condition, which satisfies robust performance and dynamic performances. Finally, the feasibility and validity of the controller analysis and synthesis method are verified by the numerical simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hidetoshi Oya ◽  
Kojiro Hagino

We consider a design problem of a variable gain robust output feedback controller with guaranteedℒ2gain performance for a class of Lipschitz uncertain nonlinear systems. The proposed variable gain robust output feedback controller achieves not only robust stability but also a specifiedℒ2gain performance. In this paper, we show that sufficient conditions for the existence of the proposed variable gain robust output feedback controller with guaranteedℒ2gain performance are given in terms of linear matrix inequalities (LMIs). Finally, a simple numerical example is included.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingang Zhao

This paper is concerned with the problem of designingH∞controllers via static output feedback controller for a class of complex nonlinear systems, which is approximated by continuous-time affine fuzzy models. A decomposition method is presented to divide the output-space into different operating regions and interpolation regions. Based on this partition, a novel piecewise controller with affine terms via static output feedback is designed. By using a dilated linear matrix inequality (LMI) characterization, some nonconvex conditions are converted into convex ones to make the asymptotic stability andH∞performance of the closed-looped system. The effectiveness of the proposed method is illustrated by a numerical example.


Sign in / Sign up

Export Citation Format

Share Document