Efficient PBCH DMRS Sequence Detection for Fast Synchronization Process of 5G NR Systems

Author(s):  
Dahae Chong ◽  
Gunyoung Ko ◽  
Beom-Kon Kim ◽  
Joo-Hyun Do ◽  
Jungwon Lee
2011 ◽  
Vol 37 (10) ◽  
pp. 1794-1800
Author(s):  
Dong-Wei GUO ◽  
Ren-He ZHANG ◽  
Chun-Lian LI ◽  
Yao-Feng CHEN ◽  
Dong-Hong MIN ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


Author(s):  
Chieh-Ju Tsai ◽  
Wei-Chang Chen ◽  
Fu-Chuan Hung ◽  
Char-Dir Chung
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1942
Author(s):  
Xiaoqing Zeng ◽  
Yang Xiang ◽  
Qianshan Liu ◽  
Liang Wang ◽  
Qianyun Ma ◽  
...  

Protein is an important component of all the cells and tissues of the human body and is the material basis of life. Its content, sequence, and spatial structure have a great impact on proteomics and human biology. It can reflect the important information of normal or pathophysiological processes and promote the development of new diagnoses and treatment methods. However, the current techniques of proteomics for protein analysis are limited by chemical modifications, large sample sizes, or cumbersome operations. Solving this problem requires overcoming huge challenges. Nanopore single molecule detection technology overcomes this shortcoming. As a new sensing technology, it has the advantages of no labeling, high sensitivity, fast detection speed, real-time monitoring, and simple operation. It is widely used in gene sequencing, detection of peptides and proteins, markers and microorganisms, and other biomolecules and metal ions. Therefore, based on the advantages of novel nanopore single-molecule detection technology, its application to protein sequence detection and structure recognition has also been proposed and developed. In this paper, the application of nanopore single-molecule detection technology in protein detection in recent years is reviewed, and its development prospect is investigated.


Author(s):  
Xia Wan ◽  
Peter J. Jin ◽  
Liang Zheng ◽  
Yang Cheng ◽  
Bin Ran

Sign in / Sign up

Export Citation Format

Share Document