scholarly journals A Polynomial Eigenvalue Decomposition Music Approach for Broadband Sound Source Localization

Author(s):  
Aidan O. T. Hogg ◽  
Vincent W. Neo ◽  
Stephan Weiss ◽  
Christine Evers ◽  
Patrick A. Naylor
2017 ◽  
Vol 29 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Ryu Takeda ◽  
◽  
Kazunori Komatani

[abstFig src='/00290001/03.jpg' width='300' text='Sound source localization and problem' ] We focus on the problem of localizing soft/weak voices recorded by small humanoid robots, such as NAO. Sound source localization (SSL) for such robots requires fast processing and noise robustness owing to the restricted resources and the internal noise close to the microphones. Multiple signal classification using generalized eigenvalue decomposition (GEVD-MUSIC) is a promising method for SSL. It achieves noise robustness by whitening robot internal noise using prior noise information. However, whitening increases the computational cost and creates a direction-dependent bias in the localization score, which degrades the localization accuracy. We have thus developed a new implementation of GEVD-MUSIC based on steering vector transformation (TSV-MUSIC). The application of a transformation equivalent to whitening to steering vectors in advance reduces the real-time computational cost of TSV-MUSIC. Moreover, normalization of the transformed vectors cancels the direction-dependent bias and improves the localization accuracy. Experiments using simulated data showed that TSV-MUSIC had the highest accuracy of the methods tested. An experiment using real recoded data showed that TSV-MUSIC outperformed GEVD-MUSIC and other MUSIC methods in terms of localization by about 4 points under low signal-to-noise-ratio conditions.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 867
Author(s):  
Ali Dehghan Firoozabadi ◽  
Pablo Irarrazaval ◽  
Pablo Adasme ◽  
David Zabala-Blanco ◽  
Pablo Palacios-Játiva ◽  
...  

Sound source localization is one of the applicable areas in speech signal processing. The main challenge appears when the aim is a simultaneous multiple sound source localization from overlapped speech signals with an unknown number of speakers. Therefore, a method able to estimate the number of speakers, along with the speaker’s location, and with high accuracy is required in real-time conditions. The spatial aliasing is an undesirable effect of the use of microphone arrays, which decreases the accuracy of localization algorithms in noisy and reverberant conditions. In this article, a cuboids nested microphone array (CuNMA) is first proposed for eliminating the spatial aliasing. The CuNMA is designed to receive the speech signal of all speakers in different directions. In addition, the inter-microphone distance is adjusted for considering enough microphone pairs for each subarray, which prepares appropriate information for 3D sound source localization. Subsequently, a speech spectral estimation method is considered for evaluating the speech spectrum components. The suitable spectrum components are selected and the undesirable components are denied in the localization process. The speech information is different in frequency bands. Therefore, the adaptive wavelet transform is used for subband processing in the proposed algorithm. The generalized eigenvalue decomposition (GEVD) method is implemented in sub-bands on all nested microphone pairs, and the probability density function (PDF) is calculated for estimating the direction of arrival (DOA) in different sub-bands and continuing frames. The proper PDFs are selected by thresholding on the standard deviation (SD) of the estimated DOAs and the rest are eliminated. This process is repeated on time frames to extract the best DOAs. Finally, K-means clustering and silhouette criteria are considered for DOAs classification in order to estimate the number of clusters (speakers) and the related DOAs. All DOAs in each cluster are intersected for estimating the position of the 3D speakers. The closest point to all DOA planes is selected as a speaker position. The proposed method is compared with a hierarchical grid (HiGRID), perpendicular cross-spectra fusion (PCSF), time-frequency wise spatial spectrum clustering (TF-wise SSC), and spectral source model-deep neural network (SSM-DNN) algorithms based on the accuracy and computational complexity of real and simulated data in noisy and reverberant conditions. The results show the superiority of the proposed method in comparison with other previous works.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


Sign in / Sign up

Export Citation Format

Share Document