A new multi-model internal model control scheme based on neural network

Author(s):  
Zhicheng Zhao ◽  
Zhiyuan Liu ◽  
Xinyu Wen ◽  
Jianggang Zhang
Robotica ◽  
2000 ◽  
Vol 18 (5) ◽  
pp. 505-512 ◽  
Author(s):  
D. T. Pham ◽  
Şahin Yildirim

This paper describes the design of an Internal Model Control (IMC) system for a planar two-degree-of-freedom robot. IMC was investigated as an alternative to the basic inverse control scheme which is difficult to implement. The proposed IMC system consisted of a forward internal neural model of the robot, a neural controller and a conventional feedback controller, all of which were realised easily. Both the neural model and the neural controller were based on recurrent networks which were trained using the backpropagation (BP) algorithm. The paper presents the results obtained with two types of recurrent networks as well as a conventional PID system.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Guohai Liu ◽  
Jun Yuan ◽  
Wenxiang Zhao ◽  
Yaojie Mi

Multimotor drive system is widely applied in industrial control system. Considering the characteristics of multi-input multioutput, nonlinear, strong-coupling, and time-varying delay in two-motor drive systems, this paper proposes a new Smith internal model (SIM) control method, which is based on neural network generalized inverse (NNGI). This control strategy adopts the NNGI system to settle the decoupling issue and utilizes the SIM control structure to solve the delay problem. The NNGI method can decouple the original system into several composite pseudolinear subsystems and also complete the pole-zero allocation of subsystems. Furthermore, based on the precise model of pseudolinear system, the proposed SIM control structure is used to compensate the network delay and enhance the interference resisting the ability of the whole system. Both simulation and experimental results are given, verifying that the proposed control strategy can effectively solve the decoupling problem and exhibits the strong robustness to load impact disturbance at various operations.


Sign in / Sign up

Export Citation Format

Share Document