Particle-swarm optimization algorithm for model predictive control of MIMO with constraints

Author(s):  
Shubin Wang ◽  
Shengnan Shan ◽  
Xionglin Luo
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Leihua Feng ◽  
Feng Yang ◽  
Wei Zhang ◽  
Hong Tian

The direct-fired system with duplex inlet and outlet ball mill has strong hysteresis and nonlinearity. The original control system is difficult to meet the requirements. Model predictive control (MPC) method is designed for delay problems, but, as the most commonly used rolling optimization method, particle swarm optimization (PSO) has the defects of easy to fall into local minimum and non-adjustable parameters. Firstly, a LS-SVM model of mill output is established and is verified by simulation in this paper. Then, a particle similarity function is proposed, and based on this function a parameter adaptive particle swarm optimization algorithm (HPAPSO) is proposed. In this new method, the weights and acceleration coefficients of PSO are dynamically adjusted. It is verified by two common test functions through Matlab software that its convergence speed is faster and convergence accuracy is higher than standard PSO. Finally, this new optimization algorithm is combined with MPC for solving control problem of mill system. The MPC based on HPAPSO (HPAPSO-MPC) algorithms is compared with MPC based on PAPSO (PAPSO-MPC) and PID control method through simulation experiments. The results show that HPAPSO-MPC method is more accurate and can achieve better regulation performance than PAPSO-MPC and PID method.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 48
Author(s):  
Jinfang Zhang ◽  
Yuzhuo Zhai ◽  
Zhongya Han ◽  
Jiahui Lu

Setting sights on the problem of input-output constraints in most industrial systems, an implicit generalized predictive control algorithm based on an improved particle swarm optimization algorithm (PSO) is presented in this paper. PSO has the advantages of high precision and fast convergence speed in solving constraint problems. In order to effectively avoid the problems of premature and slow operation in the later stage, combined with the idea of the entropy of system (SR), a new weight attenuation strategy and local jump out optimization strategy are introduced into PSO. The velocity update mechanism is cancelled, and the algorithm is adjusted respectively in the iterative process and after falling into local optimization. The improved PSO is used to optimize the performance index in predictive control. The combination of PSO and gradient optimization for rolling-horizon improves the optimization effect of the algorithm. The simulation results show that the system overshoot is reduced by about 7.5% and the settling time is reduced by about 6% compared with the implicit generalized predictive control algorithm based on particle swarm optimization algorithm (PSO-IGPC).


Sign in / Sign up

Export Citation Format

Share Document