DARA: A Delay-Aware Random Access for Slot Assignment in Long-Distance Wireless Networks

Author(s):  
Xi Chen ◽  
Chuanhe Huang ◽  
Shaojie Wen ◽  
Zongpeng Li
2021 ◽  
Author(s):  
Reza Soosahabi

This work proposes a novel framework to identify and exploit vulnerable MAC layer procedures in commercial wireless technologies for covert communication. Examples of covert communication include data exfiltration, remote command-and-control (CnC) and espionage. In this framework, the SPARROW schemes use the broadcast power of incumbent wireless networks to covertly relay messages across a long distance without connecting to them. This enables the SPARROW schemes to bypass all security and lawful-intercept systems and gain ample advantage over existing covert techniques in terms of maximum anonymity, more miles per Watts and less hardware. The SPARROW schemes can also serve as an efficient solution for long-range M2M applications. This paper details one recently disclosed vulnerability (CVD-2021-0045 in GSMA coordinated vulnerability disclosure program) in the common random-access procedure in the LTE and 5G standards This work also proposes a rigorous remediation for similar access procedures in current and future standards that disrupts the most sophisticated SPARROW schemes with minimal impact on other users. [This pre-print is also available at https://arxiv.org/abs/2108.12161]


2021 ◽  
Author(s):  
Reza Soosahabi

This work proposes a novel framework to identify and exploit vulnerable MAC layer procedures in commercial wireless technologies for covert communication. Examples of covert communication include data exfiltration, remote command-and-control (CnC) and espionage. In this framework, the SPARROW schemes use the broadcast power of incumbent wireless networks to covertly relay messages across a long distance without connecting to them. This enables the SPARROW schemes to bypass all security and lawful-intercept systems and gain ample advantage over existing covert techniques in terms of maximum anonymity, more miles per Watts and less hardware. The SPARROW schemes can also serve as an efficient solution for long-range M2M applications. This paper details one recently disclosed vulnerability (CVD-2021-0045 in GSMA coordinated vulnerability disclosure program) in the common random-access procedure in the LTE and 5G standards This work also proposes a rigorous remediation for similar access procedures in current and future standards that disrupts the most sophisticated SPARROW schemes with minimal impact on other users. [This pre-print is also available at https://arxiv.org/abs/2108.12161]


ICT Express ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 41-48
Author(s):  
Eunkyung Kim ◽  
Heesoo Lee

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2865 ◽  
Author(s):  
Md Rahman ◽  
YoungDoo Lee ◽  
Insoo Koo

Device-to-device (D2D) communications allows user equipment (UE) that are in close proximity to communicate with each other directly without using a base station. Relay-assisted D2D (RA-D2D) communications in 5G networks can be applied to support long-distance users and to improve energy efficiency (EE) of the networks. In this paper, we first establish a multi-relay system model where the D2D UEs can communicate with each other by reusing only one cellular uplink resource. Then, we apply an adaptive neuro-fuzzy inference system (ANFIS) architecture to select the best D2D relay to forward D2D source information to the expected D2D destination. Efficient power allocation (PA) in the D2D source and the D2D relay are critical problems for operating such networks, since the data rate of the cellular uplink and the maximum transmission power of the system need to be satisfied. As is known, 5G wireless networks also aim for low energy consumption to better implement the Internet of Things (IoT). Consequently, in this paper, we also formulate a problem to find the optimal solutions for PA of the D2D source and the D2D relay in terms of maximizing the EE of RA-D2D communications to support applications in the emerging IoT. To solve the PA problems of RA-D2D communications, a particle swarm optimization algorithm is employed to maximize the EE of the RA-D2D communications while satisfying the transmission power constraints of the D2D users, minimum data rate of cellular uplink, and minimum signal-to-interference-plus-noise-ratio requirements of the D2D users. Simulation results reveal that the proposed relay selection and PA methods significantly improve EE more than existing schemes.


2010 ◽  
Vol 56 (6) ◽  
pp. 2887-2892
Author(s):  
Gam D. Nguyen ◽  
Jeffrey E. Wieselthier ◽  
Anthony Ephremides

Sign in / Sign up

Export Citation Format

Share Document