Advanced Numerical Simulation Tool for Solar Cells - ASA5

Author(s):  
B. Pieters ◽  
J. Krc ◽  
M. Zeman
2004 ◽  
Vol 812 ◽  
Author(s):  
Z. -S. Choi ◽  
C. L. Gan ◽  
F. Wei ◽  
C. V. Thompson ◽  
J. H. Lee ◽  
...  

AbstractThe median-times-to-failure (t50's) for straight dual-damascene via-terminated copper interconnect structures, tested under the same conditions, depend on whether the vias connect down to underlaying leads (metal 2, M2, or via-below structures) or connect up to overlaying leads (metal 1, M1, or via-above structures). Experimental results for a variety of line lengths, widths, and numbers of vias show higher t50's for M2 structures than for analogous M1 structures. It has been shown that despite this asymmetry in lifetimes, the electromigration drift velocity is the same for these two types of structures, suggesting that fatal void volumes are different in these two cases. A numerical simulation tool based on the Korhonen model has been developed and used to simulate the conditions for void growth and correlate fatal void sizes with lifetimes. These simulations suggest that the average fatal void size for M2 structures is more than twice the size of that of M1 structures. This result supports an earlier suggestion that preferential nucleation at the Cu/Si3N4 interface in both M1 and M2 structures leads to different fatal void sizes, because larger voids are required to span the line thickness in M2 structures while smaller voids below the base of vias can cause failures in M1 structures. However, it is also found that the fatal void sizes corresponding to the shortest-times-to-failure (STTF's) are similar for M1 and M2, suggesting that the voids that lead to the shortest lifetimes occur at or in the vias in both cases, where a void need only span the via to cause failure. Correlation of lifetimes and critical void volumes provides a useful tool for distinguishing failure mechanisms.


2012 ◽  
Vol 407 (16) ◽  
pp. 3282-3284 ◽  
Author(s):  
Marcela Barrera ◽  
Francisco Rubinelli ◽  
Ignacio Rey-Stolle ◽  
Juan Plá

2021 ◽  
Vol 9 ◽  
Author(s):  
Ryoya Hiramatsu ◽  
Ryo Takahashi ◽  
Ryoto Fujiki ◽  
Keisuke Hozo ◽  
Kanato Sawai ◽  
...  

In this paper, a hybrid numerical simulation tool is introduced and performed for GaInN-based light-emitting diodes (LEDs) with metal-embedded nanostructure to theoretically predict external quantum efficiency (EQE), which composed of finite-difference time-domain, rigorous coupled wave analysis, and ray tracing. The advantage is that the proposed method provides results supported by sufficient physical background within a reasonable calculation time. From the simulation results, the EQE of LED with Ag-nanoparticles embedded nanostructure is expected to be enhanced by as high as ∼1.6 times the conventional LED device in theory.


Author(s):  
Karim Salim ◽  
◽  
M.N Amroun ◽  
K Sahraoui ◽  
W Azzoui ◽  
...  

Increasing the efficiency of solar cells relies on the surface of the solar cell. In this work, we simulated a textured silicon solar cell. This simulation allowed us to predict the values of the surface parameters such as the angle and depth between the pyramids for an optimal photovoltaic conversion where we found the Icc: 1.783 (A) and Vco: 0.551 (V) with a cell efficiency of about 13.56%. On the other hand, we performed another simulation of a non-textured solar cell to compare our values and found Icc: 1.623 (A) and Vco: 0.556 (V) with an efficiency of about 12.76%.


Sign in / Sign up

Export Citation Format

Share Document