scholarly journals Numerical Simulation of a Textured and Untextured Photovoltaic Solar Cell: Comparative study

Author(s):  
Karim Salim ◽  
◽  
M.N Amroun ◽  
K Sahraoui ◽  
W Azzoui ◽  
...  

Increasing the efficiency of solar cells relies on the surface of the solar cell. In this work, we simulated a textured silicon solar cell. This simulation allowed us to predict the values of the surface parameters such as the angle and depth between the pyramids for an optimal photovoltaic conversion where we found the Icc: 1.783 (A) and Vco: 0.551 (V) with a cell efficiency of about 13.56%. On the other hand, we performed another simulation of a non-textured solar cell to compare our values and found Icc: 1.623 (A) and Vco: 0.556 (V) with an efficiency of about 12.76%.

2017 ◽  
Vol 14 (5) ◽  
pp. 363-367 ◽  
Author(s):  
Mohammad Bagher Askari ◽  
Mohammad Reza Bahrampour ◽  
Vahid Mirzaei ◽  
Amir Khosro Beheshti Marnani ◽  
Mirhabibi Mohsen

Purpose The aim of this paper is to apply a watery infrared filter for silicon solar cell efficiency enhancement in Kerman province of Iran as a talent region for solar energy production. Design/methodology/approach With this research, the water is applied as a filter for silicon solar cells in different volumes and thicknesses. Findings The obtained results showed that using various amounts of water could be a suitable choice for increasing the efficiency of silicon solar cells. Originality/value Other wavelength regions just cause the increase in the entropy and decrease in the efficiency. With this research, the water is applied as a filter for silicon solar cell in different volumes and thickness. The obtained results showed that using different thicknesses of water could be suitable choice for increasing the efficiency of silicon solar cell.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2020 ◽  
Vol 29 ◽  
pp. 8-14
Author(s):  
Manal Midhat Abdullah ◽  
Omar Adnan Ibrahim

Core-shell nanocrystals are utilized to improve vitality conversion efficiency of Si based solar cells. In the present work, a study of synthesis and characterization of photo luminescent, down-shifting, core-shell CdSe/CdS quantum dots is introduced. The QD,s absorb in the UV range (350nm) of the solar spectrum and emit photons with wavelengths centered at (574 nm). Calculated energy gap is (2.16 eV), which is well suited for Silicon absorption and electron-hole pair generation. The grain size is ranged between (1.814 and 3.456 nm). Results show that the cell efficiency is improved from (8.81%) (For a reference silicon solar cell) to (10.07%) (For a CdSe/CdS QD deposited directly on the surface of the solar cell). This improvement is referred to the spreading of the absorbed solar radiation over the spectral response of the Si solar cell.


Author(s):  
H. Bitam ◽  
B. Hadjoudja ◽  
Beddiaf Zaidi ◽  
C. Shakher ◽  
S. Gagui ◽  
...  

Due to increased energy intensive human activities resulting accelerated demand for electric power coupled with occurrence of natural disasters with increased frequency, intensity, and duration, it becomes essential to explore and advance renewable energy technology for sustainability of the society. Addressing the stated problem and providing a radical solution has been attempted in this study. To harvest the renewable energy, among variety of solar cells reported, a composite a-Si/CZTS photovoltaic devices has not yet been investigated. The calculated parameters for solar cell based on the new array of layers consisting of a-Si/CZTS are reported in this study. The variation of i) solar cell efficiency as a function of CZTS layer thickness, temperature, acceptor, and donor defect concentration; ii) variation of the open circuit current density as a function of temperature, open circuit voltage; iii) variation of open circuit voltage as a function of the thickness of the CZTS layer has been determined. There has been no reported study on a-Si/CZTS configuration-based solar cell, analysis of the parameters, and study to address the challenges imped efficiency of the photovoltaic device and the same has been discussed in this work. The value of the SnO2/a-Si/CZTS solar cells obtained from the simulation is 23.9 %.


2021 ◽  
Vol 26 (4) ◽  
pp. 113-119
Author(s):  
FRANK ONAIFO ◽  
AKPOFURE ALEXANDER OKANDEJI ◽  
OLAMIDE AJETUNMOBI ◽  
DAVID BALOGUN

This paper studies the effect of temperature, humidity and irradiance on the power generated by a photovoltaic solar cell. This was achieved using pyranometer for determining the solar radiation, wet and dry thermometer for measuring humidity, and digital multimeter for voltage and current measurement. The result of the study show that power generation increases with increase of solar irradiance. Additionally, changes of humidity level and temperature do not significantly affect solar power generation. Furthermore, it was also observed that high temperatures and higher humidity levels accelerate the corrosion process on the solar cells which reduces the efficiency of the cells.


Author(s):  
Dan-Ju Yeh ◽  
Chung-I Ho ◽  
Jheng-Han Lee ◽  
Po-Chuan Yang ◽  
Chieh-Huang Yang ◽  
...  

2011 ◽  
Vol 1327 ◽  
Author(s):  
Dong Won Kang ◽  
Jong Seok Woo ◽  
Sung Hwan Choi ◽  
Seung Yoon Lee ◽  
Heon Min. Lee ◽  
...  

ABSTRACTWe have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.


2018 ◽  
Vol 5 (4) ◽  
pp. 041602 ◽  
Author(s):  
Michael Powalla ◽  
Stefan Paetel ◽  
Erik Ahlswede ◽  
Roland Wuerz ◽  
Cordula D. Wessendorf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document