System capacity analysis of hybrid cellular networks with cognitive radio relay

Author(s):  
Chen Liu ◽  
Qi Yang ◽  
Haowen Wang ◽  
Xuemin Hong ◽  
Jianghong Shi ◽  
...  
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 50503-50512 ◽  
Author(s):  
Syed Waqas Haider Shah ◽  
Adnan Noor Mian ◽  
Shahid Mumtaz ◽  
Jon Crowcroft

Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 80
Author(s):  
Qiuqi Han ◽  
Guangyuan Zheng ◽  
Chen Xu

Device-to-Device (D2D) communications, which enable direct communication between nearby user devices over the licensed spectrum, have been considered a key technique to improve spectral efficiency and system throughput in cellular networks (CNs). However, the limited spectrum resources cannot be sufficient to support more cellular users (CUs) and D2D users to meet the growth of the traffic data in future wireless networks. Therefore, Long-Term Evolution-Unlicensed (LTE-U) and D2D-Unlicensed (D2D-U) technologies have been proposed to further enhance system capacity by extending the CUs and D2D users on the unlicensed spectrum for communications. In this paper, we consider an LTE network where the CUs and D2D users are allowed to share the unlicensed spectrum with Wi-Fi users. To maximize the sum rate of all users while guaranteeing each user’s quality of service (QoS), we jointly consider user access and resource allocation. To tackle the formulated problem, we propose a matching-iteration-based joint user access and resource allocation algorithm. Simulation results show that the proposed algorithm can significantly improve system throughput compared to the other benchmark algorithms.


Author(s):  
Chungang Yang ◽  
Pengyu Huang ◽  
Jia Xiao ◽  
Lingxia Wang ◽  
Jiandong Li

Game theory has found an extensive application in wireless communication networks including cognitive radio networks, heterogeneous cellular networks, cooperative relay networks. Also, cognitive radio networks, green communications and heterogeneous cellular networks have attracted a wide attention on improve the spectrum efficiency and energy efficiency; therefore, the capacity, the coverage and the energy consumption. However, interference problem and energy consumption are critical for these networks. Introducing hierarchy among different decision-making players in cognitive, heterogeneous, green, cooperative cellular networks can both save energy and mitigate interference, thus enhance throughput. Stackelberg game suits to model, analyze and design the distributed algorithms in these hierarchical decision-making networking scenarios. In this chapter, we introduce basics of Stackelberg game and survey the extensive applications of Stackelberg game in cognitive, heterogeneous, cooperative cellular networks with the emphasis on resource management, green commutations design and interference management. This chapter highlights the potentials and applications with the promising vision of Stackelberg game theoretic framework for future cognitive green heterogeneous cellular networks.


Sign in / Sign up

Export Citation Format

Share Document