System Capacity Analysis of Millimeter Wave Band with Polarized Antenna Structure

Author(s):  
Kwang Hyun Park ◽  
Jun Suk Kim ◽  
Seung Hyun Cha ◽  
Min Young Chung
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Suk Kim ◽  
Jae Sheung Shin ◽  
Sung-Min Oh ◽  
Ae-Soon Park ◽  
Min Young Chung

The use of a millimeter-wave band defined as a 30–300 GHz range is significant element for improving performance of 5th generation (5G) mobile communication systems. However, since the millimeter-wave signal has peculiar propagation characteristics especially toward non-line-of-sight regions, the system architecture and antenna structure for 5G mobile communications should be designed to overcome these propagation limitations. For realization of the 5G mobile communications, electronics and telecommunications research institute (ETRI) is developing central network applying various massive antenna structures with beamforming. In this paper, we have introduced the central network and evaluated the system coverage and capacity through C++ language-based simulations with real geospatial information.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sonia Gimenez ◽  
Daniel Calabuig ◽  
Sandra Roger ◽  
Jose F. Monserrat ◽  
Narcís Cardona

Distributed Antenna Systems (DAS) are an alternative of network deployment that allows reducing the distance between transmitter and receiver by distributing the antennas throughout the coverage area. Moreover, the performance of the millimeter wave (mmWave) band can be significantly high within short transmitter-receiver distances. In this paper, the potential benefits of DAS deployments in the mmWave band are studied. To this aim, a distributed hybrid precoding (DHP) solution with remote antenna unit (RAU) selection capabilities is proposed and analyzed in an indoor DAS working in mmWaves and compared to two other indoor deployment strategies: a conventional cellular system with colocated antenna arrays and a small cell deployment. The results show that, using DHP, DAS not only brings huge gains to cell-edge users rate but also increases system capacity, becoming the best overall deployment. Further simulations including practical limitations have revealed that DAS using DHP is quite robust to combiner losses, although its performance is significantly degraded by outdated channel reports.


2012 ◽  
Vol E95.C (10) ◽  
pp. 1635-1642 ◽  
Author(s):  
Yuanfeng SHE ◽  
Jiro HIROKAWA ◽  
Makoto ANDO ◽  
Daisuke HANATANI ◽  
Masahiro FUJIMOTO

2017 ◽  
Vol 76 (10) ◽  
pp. 903-918
Author(s):  
A. V. Varavin ◽  
G. P. Ermak ◽  
A. S. Vasilev ◽  
A. V. Fateev ◽  
N. V. Varavin ◽  
...  

2011 ◽  
Vol 70 (15) ◽  
pp. 1315-1322
Author(s):  
R. I. Belous ◽  
S. P. Martynyuk ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy

Sign in / Sign up

Export Citation Format

Share Document